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Abstract

Spatial point patterns are frequently modeled with pairwise interacting point processes. Unfor-
tunately, inference in these models is complicated by the presence of an intractable function of the
parameters in the likelihood. Because of the relative computational simplicity, frequentist infer-
ence in pairwise interacting point processes has dominated the literature. However, a Bayesian
approach has not been computationally feasible until recently. Since the Metropolis–Hastings
acceptance probability contains a ratio of two likelihoods evaluated at di2ering parameter val-
ues, the resulting intractable ratio complicates the required application of MCMC. In this article,
we describe how to obtain Bayesian inferences without conditioning on the number of points
in the pattern, allowing the modeling of spatial inhomogeneity in the density of points. After
describing our importance sampling within MCMC algorithm, we analyze the well-known Irish
drumlin data set using a hard-core Straussian model.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The spatial location of events in a region constitutes a spatial point pattern. A spatial
point pattern may describe, for example, the location of trees in a forest, the location
of ant nests in a ;eld, or the location of amacrine cells in the eye. A well-known
example of a spatial point pattern is depicted in Fig. 1; the data (O’Sullivan and
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Fig. 1. Location of n = 232 drumlin in an 8 × 8 km2 ;eld.

Unwin, 2003) describe the location of 232 drumlin (glacial drift) in an 8 × 8 km2

;eld. The data set suggests that the spatial locations of drumlin can exhibit regularity
(inhibition) in their spacing. In other words, there is interaction between individuals,
and our goal is to describe the underlying spatial structure. Unfortunately, the Poisson
process (with known normalizing constant) is unable to account for such interaction.
Gibbs point processes, which can account for interaction between points, involve an
intractable normalizing constant which complicates inference (such is the case in the
sequel). For more information, see Diggle (2003), MHller and Waagepetersen (2003),
and van Lieshout (2000).

Gibbs point processes, originally used in statistical physics to study the interaction
of particles in Iuids and gases, are commonly used to model spatial point patterns
in bounded regions. The simplest and most common form of a Gibbs point process
is a pairwise interacting point process (Ripley, 1977). Motivated by the observation
that the interaction between individuals may depend upon the distance between them,
a pairwise interacting point process describes the interaction between pairs of points
by a function of (typically) the interpoint Euclidean distance called a pair poten-
tial function. Some examples of pairwise interacting point processes can be found in
Baddeley and Turner (2000), Diggle (2003), Diggle et al. (1987, 1994), Harkness
and Isham (1983), Heikkinen and Penttinen (1999), Mateu and Montes (2001), Ogata
and Tanemura (1981, 1984, 1986, 1989), Penttinen (1984), and Stoyan and Stoyan
(1998).
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Numerous frequentist techniques have been developed to allow inference in pairwise
interacting point processes: approximate maximum likelihood (Ogata and Tanemura,
1981, 1984, 1986), maximum pseudo-likelihood (Besag et al., 1982), Monte Carlo
likelihood (Geyer, 1999), among other methods (e.g. Diggle et al., 1987; Fiksel, 1984;
Takacs, 1986). While point estimation is routine, the distributional properties of the es-
timates are not well understood; thus, parametric bootstrap methods are commonly used
for interval estimation (although it is unclear if this is a sound practice). Also, some
techniques yield unbiased estimates for patterns with weak to moderate interaction, but
yield-biased estimates when there is strong inhibition (or vice versa). Researchers must
take care when choosing a technique for analysis.

A Bayesian model has been comparatively underrepresented in the literature.
Heikkinen and Penttinen (1999) described a non-parametric estimator of the pair po-
tential function based on a Bayesian smoothing technique. Modeling the pair potential
function as a step function, and utilizing the Marquardt algorithm, the authors devel-
oped a Monte Carlo algorithm which provides for estimation of the posterior mode.
It appears as though interval estimation is more challenging, however. Bognar and
Cowles (2004) demonstrated an eKcient MCMC algorithm, utilizing importance sam-
pling, which allows sampling from the full posterior distribution. The posterior real-
izations can be used to perform point, interval, among other inferences. Additionally,
they demonstrated in a simulation study that the estimates appear to be approximately
unbiased, in a frequentist sense, for any amount of interaction (the coverage appeared
correct as well).

In this article, we will (1) not condition on the number of points in the pattern, and
(2) allow for spatial inhomogeneity in the density of points. The latter constitutes the
main theme and contribution of this article. While it is often claimed that number of
points in the pattern provides little information about the interaction structure (Gates
and Westcott, 1986; Ripley, 1988), we have found that the di2erences in a Bayesian
context can be noteworthy.

This paper begins with an introduction to Gibbs and pairwise interacting point pro-
cesses in Section 2. In Section 3, a Bayesian model is proposed; speci;cally, the
likelihood (for inhomogeneous pairwise interacting point processes) and prior are de-
scribed. The goal is to perform inference by simulating, using the MCMC algorithm
outlined in Section 4, from the posterior distribution. As alluded to earlier, because
the model contains an intractable normalization constant, the MCMC algorithm for
posterior simulation is of heightened complexity; Section 5 addresses this rami;cation.
Finally, the Irish drumlin data set is analyzed in Section 6, and concluding remarks
are provided in Section 7.

2. Pairwise interacting point processes

Consider a point pattern x={x1; : : : ; xn} with n points observed in a bounded region
V ⊂ Rd. Let (V;B; �) be a measure space where B is the Borel �-;eld on V containing
all singletons, � is Lebesgue measure where 0¡�(V )¡∞, and the number of points
in B∈B has a Poisson distribution with mean �(B). For n¿ 0, let �n denote the
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set of all con;gurations of n points in V . Letting �0 = {∅}, the space of ;nite point
patterns in V is thus �=

⋃∞
n=0 �n. A point process on V is a random variable on the

exponential space (�;F; ) (Carter and Prenter, 1972) where F is a �-;eld on �,
and  is the homogeneous Poisson process with intensity measure �. Thus, for F ∈F,

(F) = exp[ − �(V )]

[
I(∅ ∈F) +

∞∑
n=1

(
1
n!

∫
Vn

I({x1; : : : ; xn} ∈F)
n∏

i=1

d�(xi)

)]
:

A Gibbs point process is any random variable on (�;F; ) having a density p with
respect to . The density is usually speci;ed as p(x) = exp[ − U (x)]=Z where U (x)
is an energy function and Z =

∫
� exp[ − U (x)] d(x) is a partition function which

normalizes p.
We consider a family of pair potential functions {��(s) : �∈�}, of Euclidean

distance s, indexed by a parameter vector � = (�1; : : : ; �m). The non-negative chem-
ical activity function � will allow the modeling of trends in the density of points
(� : x → [0;∞) for all x∈V ). A pairwise interacting point process is a special case
of a Gibbs point process where the energy function U is completely determined by
the chemical activity and pair potential. Letting ‖ · ‖ denote Euclidean distance, the
probability density function (with respect to the homogeneous spatial Poisson process
of rate 1) is

p(x|�; �) = Z−1(�; �) exp


−

n−1∑
i=1

n∑
j=i+1

��(‖xi − xj‖)


 n∏

i=1

�(xi)

def= Z−1(�; �)g(x|�)
n∏

i=1

�(xi);

where

Z(�; �) =
∫
�
g(x|�)

n∏
i=1

�(xi) d(x)

is an intractable normalizing constant which depends on � and �. The model, which
employs type I inhomogeneity (Jensen and Nielsen, 2001), has been studied by
Baddeley and Turner (2000), Ogata and Tanemura (1986), and Stoyan and Stoyan
(1998).

Kelly and Ripley (1976) observe that �� ¡ 0 may produce an in;nite normalizing
constant Z and cause simulation diKculties (Gates and Westcott, 1986; MHller, 1999).
If ��(s)¿ 0 for all s¿ 0, or if ��(s) = ∞ for all s less than some positive hard-core
distance, then Z(·)¡∞ (Diggle et al., 1987). In this article, we focus on inference
in patterns with spatial inhibition (where ��(s)¿ 0 for all s¿ 0).

3. Bayesian model

We employ a partition model for modeling the chemical activity function �. A
partition model partitions the space V into k disjoint regions via, for example, Voronoi
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tesselations (Voronoi, 1908; Green and Sibson, 1978). A Voronoi tessellation of V is
given by k generating points C1; : : : ; Ck ∈V , where the ith region (sometimes called a
tile) consists of all points in V closer in Euclidean distance to Ci than to any other
generating point. By associating a height, say Hi (¿ 0), with the ith tile (i= 1; : : : ; k),
we can approximate the chemical activity surface � (note that Hi is constant over its
respective tile). As noted by the Referee, we can easily avoid negative tile heights
by letting �(x) = exp[H (x)] where H : x → R for all x∈V . We use the former
parameterization in what follows, however.

It may be possible, a priori, to model the chemical activity function via some smooth
parametric function, if desired. Such an approach could provide for less complicated
models, but may yield less Iexibility than our aforementioned non-parametric technique.

Assume, without loss of generality, that � = (�1; : : : ; �m) has known dimension.
Because the number of tiles k is (typically) unknown, we construct a hierarchical
model with a prior distribution on k, say p(k). Given k, the external hidden vari-

ates (C;H)def= (C1; : : : ; Ck ; H1; : : : ; Hk) are a priori independent of �, and are de;ned
by the researcher, in practice. A priori, C is assumed to follow some point pro-
cess; typically, given k, C will follow a binomial process in V . A priori, the tile
heights H1; : : : ; Hk are i.i.d. and are independent of C; for example H1; : : : ; Hk may
be a priori i.i.d. uniform on (0; Hu) for some Hu ¿ 0. Because the process (Ci; Hi)
(i = 1; : : : ; k) is independent of statistical model for the point pattern x, the joint
prior can be written as p(�; k; C; H)=p(�)p(C;H |k)p(k) where, for simplicity, we let

p(�; C; H)def= p(�; k; C; H), notationally ignoring k. Heikkinen and Arjas (1998) applied
this hierarchical type of construction in modeling the intensity of an inhomogeneous
spatial Poisson process. Although their model assumed no interaction between points,
it did allow for non-independent tile heights (this may also be possible for the current
setting).

If there are k tiles, we write the likelihood as

L(�; C; H)def= Z−1(�; C; H)g(x|�)
n∏

i=1

H (xi); (1)

where H (xi) denotes the height of the tile that contains the point xi (i.e. if xi is closest
to Cj, then H (xi) = Hj). Unfortunately, because Z(�; C; H) is an intractable function
of the parameters, inference based on the exact likelihood is impossible.

4. Posterior simulation

We now describe how to simulate from the full posterior distribution

p(�; C; H |x) ˙ L(�; C; H)p(�; C; H):

Since the sampler will dictate the number of tiles k, a reversible jump MCMC update
(Green, 1995) is needed to allow the sampler to traverse models with di2ering numbers
of tiles. A standard Metropolis–Hastings update (Metropolis et al., 1953; Hastings,
1970) will suKce for moves in which the dimension of the parameter space remains
unchanged.
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The algorithm begins by choosing an arbitrary number of tiles k(t) followed by an
arbitrary starting value

(� (t); C(t); H (t)) = (�(t)
1 ; : : : ; �(t)

m ; C(t)
1 ; : : : ; C(t)

k(t) ; H
(t)
1 ; : : : ; H (t)

k(t) );

where t = 0. A move type is chosen at random; with probability ap + rp the sampler
attempts to change the number of tiles, and with probability 1 − ap − rp the sampler
chooses a move in which the number of tiles remains unchanged. If the latter is

chosen, we can let %(t)=(%(t)
1 ; : : : ; %(t)

m+2k(t) )
def=(� (t); C(t); H (t)) denote the current parameter

vector, and randomly choose (independent of %(t)) a component to be updated, say %(t)
i

(all components are chosen with equal probability). A candidate value %∗
i is drawn

from some proposal distribution qi(%∗
i |%(t)) yielding the proposed parameter vector %∗ =

(%(t)
1 ; : : : ; %(t)

i−1; %
∗
i ; %

(t)
i+1; : : : ; %

(t)
m+2k(t) )

def= (� ∗; C∗; H∗). Accept the candidate value, that is let
%(t+1) = %∗, with probability

' = min

[
1;

p(%∗|x)
p(%(t)|x)

qi(%
(t)
i |%∗)

qi(%∗
i |%(t))

]

= min

[
1;

L(%∗)
L(%(t))

p(%∗)
p(%(t))

qi(%
(t)
i |%∗)

qi(%∗
i |%(t))

]

= min

[
1;

g(x|� ∗)
∏n

i=1 H∗(xi)Z(%(t))
g(x|� (t))

∏n
i=1 H (t)(xi)Z(%∗)

p(%∗)
p(%(t))

qi(%
(t)
i |%∗)

qi(%∗
i |%(t))

]
; (2)

otherwise reject the candidate value and set %(t+1)=%(t). Increment t and choose another
move type at random.

The sampler attempts to add and remove tiles with probabilities ap and rp, respec-
tively. Suppose the current state %(t)=(� (t); C(t); H (t)) has k(t) tiles. To add a single tile,
the reversible jump MCMC update proceeds by choosing, say, u1 uniformly in V and
letting the candidate generating point C∗

k(t)+1 = u1. Then choose u2 from some proposal
density q(u2|%(t)) and let the respective tile height H∗

k(t)+1 = u2. The candidate vector,

%∗ = (� (t); C(t); C∗
k(t)+1; H

(t); H∗
k(t)+1)

def= (� ∗; C∗; H∗), is accepted via Green’s acceptance
probability

' = min

[
1;
∏n

i=1 H∗(xi)Z(%(t))∏n
i=1 H (t)(xi)Z(%∗)

p(%∗)
p(%(t))

rp�(V )
ap(k(t) + 1)q(H∗

k(t)+1|%(t))
Ja

]
: (3)

Note that Green’s acceptance probability (3) contains a Jacobian Ja. Here, the Jacobian
of the transformation (see Green, 1995) is

Ja =
∣∣∣∣ @%∗

@(%(t); u1; u2)

∣∣∣∣=
∣∣∣∣∣@(�

(t); C(t); C∗
k(t)+1; H

(t); H∗
k(t)+1)

@(� (t); C(t); u1; H (t); u2)

∣∣∣∣∣= 1:
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To remove a tile, randomly choose one of the k(t) current tiles, say the ith, for removal
(all tiles are chosen with equal probability). Denoting the current and proposed param-
eter vectors as %(t)=(� (t); C(t); H (t)) and %∗=(� (t); C(t)\C(t)

i ; H (t)\H (t)
i )=(� ∗; C∗; H∗),

respectively, accept the tile removal with probability

' = min

[
1;
∏n

i=1 H∗(xi)Z(%(t))∏n
i=1 H (t)(xi)Z(%∗)

p(%∗)
p(%(t))

apk(t)q(H (t)
i |%∗)

rp�(V )
Jr

]
: (4)

The Jacobian Jr is the inverse of the Jacobian Ja had we been attempting to add the
tile C(t)

i and respective height H (t)
i to %∗ = (� (t); C(t) \C(t)

i ; H (t) \H (t)
i ) = (� ∗; C∗; H∗).

Hence, of course, Jr = 1.
Notice that the intractable functions Z(%(t)) and Z(%∗) do not cancel in the acceptance

probabilities (2)–(4). Hence, the intractable ratio

rdef=
Z(%(t))
Z(%∗)

must be estimated within every iteration of the sampler.

5. Estimation of the intractable ratio

Importance sampling (Smith and Gelfand, 1992) has proven to be a useful tool for
estimating r. Via the MCMC algorithm described by Geyer and MHller (1994), it is
possible to generate spatial point patterns (importance samples) from

p(x|�′; C′; H ′)def= p(x|%′) = Z−1(%′)g(x|�′)
n∏

i=1

H ′(xi)

for any %′ where ��′ ¿ 0 without knowledge of Z(%′) (the algorithm is described
below). The importance samples, say x(l) = (x(l)

1 ; : : : ; x(l)
n(l) ); l=1; : : : ; L, will be used to

estimate r. Speci;cally, suppose x(1); : : : ; x(L) are realized (after burn-in) from p(x|%′)
for some %′. We can estimate r = Z(%(t))=Z(%∗) in (2)–(4) by

r̂ def=
L∑

l=1

g(x(l)|� (t))
∏n(l)

i=1 H (t)(x(l)
i )

g(x(l)|�′)
∏n(l)

i=1 H ′(x(l)
i )

(
L∑

l=1

g(x(l)|� ∗)
∏n(l)

i=1 H∗(x(l)
i )

g(x(l)|�′)
∏n(l)

i=1 H ′(x(l)
i )

)−1

: (5)

If the chain is ergodic, then

1
L

L∑
l=1

g(x(l)|� (t))
∏n(l)

i=1 H (t)(x(l)
i )

g(x(l)|�′)
∏n(l)

i=1 H ′(x(l)
i )

a:s:→
∫
�

g(x|� (t))
∏n

i=1 H (t)(xi)
g(x|�′)

∏n
i=1 H

′(xi)
p(x|%′) d(x)

=
1

Z(%′)

∫
�
g(x|� (t))

n∏
i=1

H (t)(xi) d(x)

=
Z(%(t))
Z(%′)

:
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Similarly,

1
L

L∑
l=1

g(x(l)|� ∗)
∏n(l)

i=1 H∗(x(l)
i )

g(x(l)|�′)
∏n(l)

i=1 H ′(x(l)
i )

a:s:→ Z(%∗)
Z(%′)

and therefore r̂ a:s:→ r.
We stress that two MCMC algorithms are being used; the main MCMC sampler

in Section 4, and the following MCMC algorithm for generating importance samples.
Remember, because the Metropolis–Hastings acceptance probability in the main sam-
pler contains the intractable ratio r, then r must be estimated within each iteration. In
response, we execute, within each iteration of the main sampler, the following MCMC
sampler to obtain the spatial point patterns needed to estimate r. Clearly, running an
MCMC sampler within every iteration of the main sampler is computationally expen-
sive. However, with current computing technology, such an implementation is feasible.

For completeness, the algorithm of Geyer and MHller (1994) for generating spatial
point patterns is now outlined. To generate spatial point patterns from p(x|%′), let
l = 0 and generate an initial point pattern x(l) = (x(l)

1 ; : : : ; x(l)
n(l) ) with, say, n(l) = n

points distributed uniformly in V . Within each iteration, the sampler randomly chooses
between three move types: an ax-move (add a point to the pattern), an rx-move (remove
a point), and an mx-move (move a point). The probability of choosing each move type
is axp, rxp, and mx

p, respectively, where axp+rxp+mx
p=1 and (for simplicity) axp=rxp. For

an mx-move, randomly choose a point (all points are chosen with equal probability),
say x(l)

i , from the current pattern x(l) and propose a new location x∗
i uniformly in V .

Letting x∗=(x(l)
1 ; : : : ; x(l)

i−1; x
∗
i ; x

(l)
i+1; : : : ; x

(l)
n(l) ) and n(l+1)=n(l), accept the move, that is let

x(l+1) = x∗, with probability min[1; {g(x∗|�′)H ′(x∗
i )}={g(x(l)|�′)H ′(x(l)

i )}], otherwise
set x(l+1) = x(l). For an ax-move, choose a point, say x∗, uniformly in V . Letting
x∗ = (x(l); x∗), accept the new point x∗, that is let x(l+1) = x∗ and n(l+1) = n(l) +

1, with probability min[1; exp{−∑n(l)

i=1 ��′(‖x(l)
i − x∗‖)}H ′(x∗)�(V )=(n(l) + 1)], else

set x(l+1) = x(l) and n(l+1) = n(l). For an rx-move, choose a point at random (all
points are chosen with equal probability), say x(l)

i , from the current pattern x(l). Accept
the removal of the point, that is let x(l+1) = x(l) \ x(l)

i and n(l+1) = n(l) − 1, with
probability min[1; n(l)={exp{−∑j �=i ��′(‖x(l)

j − x(l)
i ‖)}H ′(x(l)

i )�(V )}], else let x(l+1) =
x(l) and n(l+1) = n(l). After an mx, ax, or rx move is executed, increment l, choose
another move type at random, and repeat. By monitoring the number of points n(l) and

the total potential energy (TPE),
∑n(l)−1

i=1

∑n(l)

j=i+1 ��′(‖x(l)
i − x(l)

j ‖), over time l, it is
possible to witness the convergence of n(l) and the total potential energy, and hence,
informally, the sampler.

To avoid having to obtain an unduly large importance sample x(1); : : : ; x(L), the accu-
rate estimation of r requires that the importance sampling density p(x|%′) be not unlike
both target densities p(x|%∗) and p(x|%(t)) (i.e. %′ should be close to both %∗ and %(t)).
A poor choice of importance sampling density will necessitate the generation of many
more importance samples to approximate r for any given degree of accuracy. Hence,
the proposal density should be concentrated near %(t) ensuring that %∗ is relatively close
to %(t) which in turn ensures that %′ can be chosen close to both %(t) and %∗.
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A proposal density not concentrated near %(t) can cause r (and hence the acceptance
probability) to be poorly estimated, which can induce poor mixing behavior (Bognar
and Cowles, 2004) (notwithstanding the issue of importance sampling, such a proposal
density can also create low acceptance rates, causing poor mixing). Furthermore, if the
proposal density is highly concentrated near %(t), mixing will be poor since the sampler
will move very slowly. Clearly, the proposal densities should be chosen with care.

Chen and Shao (1997) described, in a non-spatial setting, a similar estimator to (5).
Their technique, called ratio importance sampling, was shown, in its optimal implemen-
tation, to have a smaller asymptotic relative mean squared error than bridge and path
sampling (Gelman and Meng, 1998). Bognar and Cowles (2004) described a similar
but more eKcient method for estimating the intractable ratio r called grid-based im-
portance sampling. Through clever setup and implementation, grid-based importance
sampling allows the reusing of previously generated importance samples, increasing
computational eKciency. When conditioning on n, they also found that optimal ratio
importance sampling and (5), when used to estimate r in the acceptance probability,
produced comparable inferences. Unlike our importance sampling approach described
in Section 5, grid-based importance sampling is only feasible (due to storage consid-
erations) when the parameter space is of low dimension.

6. Analysis of the Irish drumlin data

Recall the drumlin data x= {x1; : : : ; x232} observed in V , an 8 × 8 km2 ;eld, plotted
in Fig. 1. Because the drumlin locations exhibit regularity (i.e. there are very few pairs
of points that are close), because there appears to be inhomogeneity in the density of
points, and because there are no pairs of points that are very close, a natural choice
is an inhomogeneous hard-core Straussian model (Strauss, 1975) where � = (bhc; b; h)
and

��(s) =




∞ s6 bhc;

h bhc ¡s6 b;

0 s¿b:

(6)

The hard-core parameter bhc is the minimum distance between two drumlin locations,
the Straussian parameter h (we assume h¿ 0) describes the strength of inhibition, and
the interaction distance b (¿bhc) describes the distance at which pairs of points cease
to interact.

A uniform prior on (0; 0:14455=mini �=j ‖xi − xj‖) was placed on bhc, and given bhc,
a uniform prior on (bhc; 8) was placed on b (a Iat prior on (bhc;∞) could be utilized
as well). An N(h = 1; �h = 10) prior (truncated to R+) was placed on h. A Poisson
prior with mean �k = 5 was placed on the number of tiles k, subject to k¿ 1. Given
the number of tiles k, the generating points Ci were assumed to be i.i.d. uniform in
V , i = 1; : : : ; k. The prior on the corresponding tile heights Hi (i = 1; : : : ; k) were i.i.d.
Unif (0; 20).
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Note that, in general, decreasing the number of tiles k, or decreasing the variance of
Hi, or both, produces stronger smoothing. Hence, the priors on k and Hi (i = 1; : : : ; k)
should be chosen to reIect the desired amount of smoothing of the chemical activity.
The degree of smoothing is further considered in Section 6.2.

6.1. Sampler details

Six move types were used to obtain draws from the posterior p(bhc; b; h; C; H |x):
bhc-move (update the hard-core interaction distance), b-move (update the interaction
distance), h-move (update the Straussian parameter), C-move (move a generating
point), H -move (update the height of a tile), a-move (add a tile), and an r-move
(remove a tile). A move type was randomly chosen within each iteration of the main
sampler. The move probabilities were bhc;p=bp=hp=0:1 and Cp=Hp=ap=rp=0:175,
respectively.

At the beginning of iteration t, suppose the current parameter vector was %(t) =
(b(t)

hc ; b
(t); h(t); C(t); H (t)). Drawing from Section 4, if, say, a non-dimension changing

b-move was chosen, a candidate interaction distance b∗ was obtained from a Unif
(b(t) ±0:05) distribution. Using the estimation procedure in Section 5, L=15; 000 point
patterns (following a 5000 iteration burn-in, discussed below) were generated from
p(x|%′) where %′ =(b(t)

hc ; 0:5[b∗ +b(t)]; h(t); C(t); H (t)). Geyer and MHller (1994) observe
that their MCMC algorithm (described in Section 5) mixes most rapidly when axp and
rxp are large; hence we let mx

p = 0:1 and axp = rxp = 0:45. After realizing x(1); : : : ; x(L)

from p(x|%′), the intractable ratio r = Z(%(t))=Z(%∗) in the acceptance probability (2)
was estimated via (5). Plugging estimate (5) into (2), the candidate was accepted with
probability (2). Then, t was incremented, and another move type was randomly chosen
and executed. If b∗ �∈ (b(t)

hc ; 8), then the prior ratio equals 0 and the candidate b∗ was
rejected.

Because Geyer and MHller’s algorithm for generating patterns from p(x|%′) was
initialized with a binomial process (i.e. a Poisson process conditional on the number
of points n), convergence is slowest when %′ describes spatial regularity. Trace plots of
n and the total potential energy were used to determine the burn-in period. Trace plots
were generated under various values of %′; in all cases, convergence occurs quickly
(certainly by the 5000th iteration, our burn-in period), and mixing is quite rapid.

The dominated coupling from the past technique of Kendall and MHller (2000) can
be used to allow exact sampling from Strauss (among other) spatial point processes,
eliminating the need to determine the length of burn-in in Geyer and MHller’s algorithm
in Section 5. However, because MHller and Nicholls (1999) noted that such simulations
can be too slow to be useful in practice, we did not attempt to use this technique in
our analysis.

The bhc-move, h-move, C-move, and H -move proceeded similarly to a b-move. For a
bhc-move, the candidate b∗

hc was drawn from a Unif (b(t)
hc ±0:025) distribution and the im-

portance sampling locale was %′ =(0:5[b∗
hc +b(t)

hc ]; b(t); h(t); C(t); H (t)). For an h-move, h∗

was drawn from a Unif (h(t)±0:5) distribution and %′=(b(t)
hc ; b

(t); 0:5[h∗+h(t)]; C(t); H (t)).
For a C-move, a generating point, say C(t)

i , was randomly chosen, a candidate location
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C∗
i was drawn uniformly from a square of area 4 centered about C(t)

i , and %′ =
(b(t)

hc ; b
(t); h(t); C(t)

1 ; : : : ; C(t)
i−1; C

mid
i ; C(t)

i+1; : : : ; C
(t)
k(t) ; H (t)) where Cmid

i was the mid-point be-

tween C(t)
i and C∗

i . For an H -move, one of the current heights, say H (t)
i , was randomly

chosen, a candidate height H∗
i was drawn from a Unif (H (t)

i ± 1:5) distribution, and
%′ = (b(t)

hc ; b
(t); h(t); C(t); H (t)

1 ; : : : ; H (t)
i−1; 0:5[H∗

i + H (t)
i ]; H (t)

i+1; : : : ; H
(t)
k(t) ). Note that if b∗

hc �∈
(0; b(t)), h∗ ¡ 0, H∗

i �∈ (0; 20), or C∗
i �∈ V , then the candidate was automatically rejected

by the prior.
As was alluded to in Section 5, since the sampler must move in moderate steps,

the Metropolis–Hastings acceptance rates (and autocorrelation) can become inIated
(depending upon implementation, Gelman et al. (1996) suggest acceptance rates be-
tween approximately 15% and 50%). Consequently, the acceptance rates were 20.0%,
43.0%, 49.1%, 27.7%, and 64.9% for a b-move, bhc-move, h-move, C-move, and
H -move, respectively. See Bognar and Cowles (2004) for more guidance on choosing
proposal densities.

As in Section 4, an a-move proceeds by generating C∗
k(t)+1 uniformly in V , draw-

ing a candidate height H∗
k(t)+1 from q(H∗

k(t)+1|%(t)) = Unif (H (t)(C(t)
∗ ) ± 1:5) where C(t)

∗
is the closest generating point to C∗

k(t)+1 (i.e. propose a height uniformly within 1.5
of the current height at C∗

k(t)+1), generating L = 15; 000 point patterns from p(x|%′)
where %′ = (b(t)

hc ; b
(t); h(t); C(t); C∗

k(t)+1; H
(t); 0:5[H∗

k(t)+1 + H (t)(C(t)
∗ )]), estimating r via

(5), plugging in the estimate into (3), and accepting the new tile with probabil-
ity (3). If H∗

k(t)+1 �∈ (0; 20), then the candidate was automatically rejected via the
prior. An r-move proceeded as in Section 4 where r was estimated via (5) using
%′=(b(t)

hc ; b
(t); h(t); C(t); H (t)

1 ; : : : ; H (t)
i−1; 0:5[H (t)

i +H∗(C(t)
i )]; H (t)

i+1; : : : ; H
(t)
k(t) ). If an r-move is

attempted when k(t)=1, the move is automatically rejected by the prior and %(t+1)=%(t).
Ten separate chains were run in parallel on 10 Intel Xeon 2:4 GHz workstations run-

ning Linux. Each computer completed 17,500 posterior iterations, including a 5000 iter-
ation burn-in (the post-burn-in iterations were combined). With the coding in C++, the
time to obtain the 175; 000 updates was approximately 14 hours (140 total computing
hours). Analysis of the 125,000 post-burn-in iterations was performed in part using the
Bayesian Output Analysis (BOA) software (Smith, 2001). Trace plots of bhc, b, and h
show good mixing behavior: the Gelman and Rubin (Gelman and Rubin, 1992; Brooks
and Gelman, 1998) corrected scale reduction factors for bhc, b, and h were 1.049,
1.003, and 1.017, respectively, while the multivariate potential scale reduction factor
was 1.055. Because of the changing dimensionality, evaluating mixing and convergence
of C and H is more diKcult (see Brooks and Giudici (1999) for current work in this
area). We informally address this issue below, however.

Probably of little practical concern, in theory the sampler could jump from %(t) to
%′ and back again. Because the respective ratios Z(%(t))=Z(%′) and Z(%′)=Z(%(t)) are
approximated in the acceptance probability, their product will not equal one, as it
should. Hence, the likelihood function L(bhc; b; h; C; H) is not constant, which implies
that the established theory for MCMC samplers does not apply. Nevertheless, based
upon anecdotal evidence from simulation studies (not described herein), the aforemen-
tioned approximation does not prevent the sampler from converging to a distribution
that closely resembles the true posterior.
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Fig. 2. Estimated marginal posterior distribution of the hard-core interaction distance bhc.

6.2. Results

The estimated marginal posterior distribution of the hard-core distance bhc is
displayed as histogram in Fig. 2. The posterior mean of bhc is approximately
0:130 km (Monte Carlo error 0.0005), with median of 0:136 km. The posterior mode
is just under 0:14455 = mini �=j ‖xi − xj‖ km. The 95% equal tail interval is (0:071;
0:144) km.

The estimated marginal posterior distribution of the interaction distance b is displayed
in Fig. 3. The posterior mean of b is approximately 0:262 km (Monte Carlo error
0.0002), with median and mode of 0.263 and 0:256 km, respectively. The 95% equal
tail interval is (0:243; 0:278) km. The jagged nature of the marginal posterior is due
to ��, and hence the marginal posterior distribution of b, p(b|x), being discontinuous
(Bognar and Cowles, 2004).

Fig. 4 displays the estimated marginal posterior distribution of the Straussian
parameter h. The estimated posterior mean, median, and mode of h are 1.073 (Monte
Carlo error 0.0051), 1.067, and 1.063, respectively. The 95% equal tail interval is
(0:655; 1:540). The amount of uncertainty in the point estimate is surprising, especially
considering the size of the data set. Unlike the frequentist approaches, the ability to
reliably obtain interval estimates (and make such an observation) demonstrates the
favorability of the current approach.

For each post-burn-in iteration, the pair potential function ��(s) was evaluated at 200
values of s ranging from 0 to 0:3 km. The posterior mean of ��(s) was approximated
at each value of s by taking the mean of the 125,000 evaluations. The approximated
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Fig. 3. Estimated marginal posterior distribution of the interaction distance b.
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Fig. 4. Estimated marginal posterior distribution of the Straussian parameter h.

pair potential function is depicted in Fig. 5. By ;nding the quantiles of the 125; 000
evaluations at each value of s, we were able to compute 95% pointwise credible
intervals.
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Fig. 5. Estimated posterior mean (with 95% pointwise credible intervals, dotted lines) of the pair potential
function ��(s) for s ranging from 0 to 0:3 km.

To estimate the chemical activity surface, a 51×51 grid was constructed over V . For
each post-burn-in iteration, the height of the chemical activity function was recorded at
each grid location. The mean of the 125,000 evaluations was computed at the 512=2601
grid points, and is graphically depicted in Fig. 6 as a contour plot.

It is also possible to estimate the marginal posterior distribution of the chemical
activity at any point in V . Fig. 7 depicts the marginal posterior distribution of the
chemical activity (per square kilometer) at locations (1; 6), (4; 1), and (6; 4) (which
are depicted in Fig. 6 by A, B, and C, respectively). The posterior mean, median,
and 95% credible interval at A= (1; 6) are 2:910 (Monte Carlo error = 0:0319), 2:736,
and (1:030; 5:797), respectively. Similarly, at B = (4; 1) the respective estimates are
9:428 (0:0474), 9:169, and (6:519; 13:869); while at C = (6; 4), the estimates are 8:482
(0:0367), 8:387, and (5:732; 11:768).

We informally addressed the mixing behavior of C and H by monitoring the height
of the chemical activity surface (from a single chain) at locations A, B, and C. There
appears to be good mixing behavior based upon the trace plots.

The estimated marginal posterior distribution of the number of tiles k is depicted in
Fig. 8. In Q-move, the product of the prior and proposal ratios, under a Unif (0; Hu)
prior on the H ’s, is �krp[(1−exp(−�k))(k(t) +1)2apHu]−1: Placing a very di2use prior
on tile heights H (i.e. Hu large) deIates the aforementioned ratio and in turn deIates
the acceptance probability (3), causing the sampler to always choose the simplest model
with k=1 tiles. Recall that strong smoothing of the chemical activity surface is attained
when using strong, informative priors on the H ’s since little variability in the H ’s will
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Fig. 6. Estimated posterior mean of the chemical activity surface (per square kilometer).

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

P
os

te
rio

r 
D

en
si

ty

Fig. 7. Estimated marginal posterior distribution of the chemical activity (per square kilometer) at locations
A = (1; 6) (solid line), B = (4; 1) (dashed line), and C = (6; 4) (dotted line).
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Fig. 8. Estimated marginal posterior distribution of the number of tiles k.

be encouraged by the prior. The same occurs with a very di2use prior on the H ’s since
such a prior suppresses the number of tiles k, increasing smoothing. Thus, the least
amount of smoothing occurs for a slightly di2use, but not overly di2use, prior on the
tile heights. Interestingly, Green (1995) noted a similar phenomenon in his analysis of
a one-dimensional multiple change point problem.

7. Discussion

Our algorithm to obtain Bayesian inference in spatially inhomogeneous pairwise
interacting point processes, although computationally intensive, is feasible with current
computing technology. Like the frequentist approaches, our Bayesian technique provides
for routine point estimation. However, Mateu and Montes (2001) and Diggle et al.
(1994) show that some frequentist approaches can produce biased estimates in certain
circumstances; but, as illustrated by Bognar and Cowles (2004), a Bayesian model
does not appear to exhibit a similar characteristic.

Because the sampling distributions of the estimates are unclear, frequentists typically
use parametric bootstrap procedures to obtain interval estimates. However, the behavior
of such estimates is unclear in the current setting. In contrast, the Bayesian paradigm
provides a convenient framework not only for interval estimation, but for many other
posterior inferences.

Because there is no o2-the-shelf software that can perform the analysis, practitioners
must code their own MCMC samplers to ;t Bayesian models. This, in and of itself,
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is not a drawback since frequentists must code their analyses as well. In the end,
however, we feel that a Bayesian model provides more detailed inferential insights.
Additionally, our Bayesian technique can be used to model marked pairwise interacting
point processes, models with multi-scale pair potential functions (Penttinen, 1984), and
models in which � is of unknown dimension.
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