
1 Normal Theory and the Precision Matrix

Letting x be a p-vector with a multivariate Gaussian/normal, x ∼ N(m, Σ), with pdf

p(x) = ((2π)p|Σ|)−1/2 exp

(
−1

2
(x−m)T Σ−1(x−m)

)
.

Σ is referred to as the covariance matrix, and Φ = Σ−1 is known as the precision
matrix (when Σ−1 exists). Writing the pdf in terms of the precision matrix, we get

p(x) ∝ |Φ|1/2 exp

(
−1

2
(x−m)T Φ(x−m)

)
.

1.1 Partitioned Normal Distribution

The p-dimensional normal random quantity x ∼ N(m, Σ) can be partitioned as

x =

(
x1

x2

)
.

The mean and covariance matrix are partitioned conformably as follows

m =

(
m1

m2

)
, Σ =

(
V1 R
RT V2

)
.

Of course, the partitions satisfy xi ∼ N(mi, Vi).
Standard results from linear algebra give

Φ = Σ−1 =

(
K1 H
HT K2

)
,

where

• K−1
1 = V1 −RV −1

2 RT ,

• H = −K1RV −1
2 ,

• K−1
2 = V2 −RT K−1

1 R.
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1.2 Conditional Normal Distributions

Consider the zero-mean case: x ∼ N(0, Φ−1) with p(x) ∝ exp(−Q(x)/2), where

Q(x) = xT Φx = xT
1 K1x1 + 2xT

1 Hx2 + xT
2 K2x2.

By inspection we have
p(x1|x2) ∝ exp(−Q(x1|x2)/2),

where
Q(x1|x2) = xT

1 K1x1 + 2xT
1 Hx2.

This yields the conditional distribution

x1|x2 ∼ N(E[x1|x2], V (x1|x2)),

where V (x1|x2) = K−1
1 ,

and E[x1|x2] = A1x2, with A1 = RV −1
2 = −K−1

1 H. In the general case we have

(x1|x2) ∼ N(m1 + A1(x2 −m2), K
−1
1 ).

The expression A1 = RV −1
2 expresses how the regression of x1 on x2 is based on the

covariance elements R being rotated and scaled by the variance V2 of the conditioning
variables. The second expression for A1 relates to the elements H of the precision
matrix Φ and has critical implications.

1.3 Precision Matrix and Conditional Representation

Consider the partition where x1 is a scalar and x2 = x2:p = x−1. Denote the elements
of the precision matrix Φ as Φi,j. From the previous section, p(x1|x−1) is normally
distributed with moments

V (x1|x−1) = 1/Φ1,1,

and

E[x1|x−1] = m1 −
1

Φ1,1

H(x−m2).

Now, H = −K1,1RV −1
2 = (Φ1,1, . . . , Φ1,p). From this, we get

p(x1|x−1) = m1 −
p∑

j=2

Φ1,j

Φ1,1

(xj −m2,j).

Of course, all of this generalizes to any scalar partition with x1 being the ith element
and x2 = x−i. This shows explicitly how the elements of the precision matrix Φ, for
the full joint distribution, determines the conditional structure.

• Zeros in the precision matrix Φ define, and are defined by, the conditional inde-
pendencies in p(x). That is, the precision Φi,j = 0 iff the complete conditional
distribution of xi does not depend on xj. More explicitly, Φi,j = 0 iff xi ⊥ xj

conditional on x−(i,j).

• This is the basic underlining idea in the field of Gaussian Graphical Models.
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