
Statistics 5114: Odds Ratios: Delta Method,
Bootstrap and Bayes

For each homework assignment, turn in at the beginning of class on the indicated due
date. Late assignments will only be accepted with special permission. Write each
problem up very neatly (LATEX is preferred). Show all of your work.

Problem 1

Consider the Bernoulli sampling model, defined by:

Pr(xi = 1) = p, and Pr(xi = 0) = 1− p.

A good estimator of p is the sample average p̂ = X̄ =
∑

i xi/N . Notice that E[X̄] = p,

and V ar(X̄) = p(1−p)
N

. Additionally, X̄ → N(p, p(1− p)/N). Say we wish to estimate
the odds ratio g(p) = p/(1− p).

Part a

The Delta method says:
√
N(g(X̄)− g(p))→ N(0, [g′(p)]2V ar(xi)). (1)

For this problem, sample xi ∼ Bernoulli(0.5), i = 1, . . . , N , with N=1,000. Com-
pute g(X̄). Repeat this 5,000 times, so that you’ll have 5,000 realizations of g(X̄).
Plot a histogram of these samples, and compare to the result implied by equation (1)
(i.e. plot the correct normal curve over your histogram. How does it look?).

Part b

Repeat for N = {10, 30, 50, 100, 500}.

Problem 2

For each of the samples sizes N = {10, 30, 100, 1000}, and true parameters p =
{0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99} (there are 28 simulation configurations), sample N
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Bernoulli realizations. Based on these N sample points, using the delta method,
approximate both the expected value and variance of g(X̄). Recall that you’re pre-
tending that you don’t know p here, so you need to use:

Ê = p̂/(1− p̂)

and
V̂ =

(
[g′(p)]2V ar(X̄)

)
p=p̂

.

For each configurations, repeat the exercise 100 times (You will have 100 random
estimates of E[g(X̄)] and V ar(g(X̄)). Save the results, as you will compare these to
results obtained from Bootstrapping, and a Bayesian analysis.

Problem 2

Using the samples from Problem 2, estimate both the expected value and variance
of g(X̄) using the bootstrap. That is, for each sample realization, create a bootstrap
distribution of g(X̄) and estimate both the mean and the variance. For each random
sample, you will create B bootstrap realizations: {g(X̄(b))|b = 1, . . . , B}, and compute
both:

ḡ =
∑

b

g(X̄(b))/B

and
σ2

g =
∑

b

(g(X̄(b))− ḡ)2/(B − 1).

For each configuration, repeat the exercise 100 times.

Problem 3

In this problem, you will perform a Bayesian analysis of p/(1 − p). Keep in mind,
that in classical statistics, we use plug in estimators of the data to form p̂/(1 − p̂);
however, in Bayesland, we form the distribution of z = p/(1 − p), conditioned on
the observed data. That is, we will form the posterior distribution (distribution seen
a-poseriori to (after) seeing the data)

p(z|x1, . . . , xN) =
L(z|x1, . . . , xN)p(z)∫
L(z|x1, . . . , xN)p(z)dz

,

where L(z|x1, . . . , xN) is the likelihood function, and p(z) is the prior on z (distri-
bution known a-priori (before) seeing the data). Now, one of the nice features of a
Bayesian analysis is that it’s completely probabilistic. That is, our inferences are on
z, which follows a probability distribution. We need to simply find this probability
distribution. First, we’ll find the probability distribution of p and then do a simple
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transformation to find the distribution on z. Using the Beta(1/2, 1/2) prior, form
the posterior for p. Why p ∼ Beta(1/2, 1/2) is a good question. We know that a
Beta(1/2, 1/2) has some nice properties: 1) it makes finding the posterior on p very
easy (i.e. it’s the conjugate choice), 2) it has optimal frequentist properties, and 3)
it is invariant to transformations. We have seen that the first property is true, but
the other 2 reasons are reserved for classes like STAT 5444.

Part a

Given x1, . . . , xN , find the likelihood function for p.

Part b

Given p ∼ Beta(1/2, 1/2), find π(p|x1, . . . , xN).

Part c

Using z = p/(1− p), transform your result found in Part b to find π(z|x1, . . . , xN).

Part d

Using the samples from Problem 2, estimate both the expected value and variance
of z|x1, . . . , xN . That is compute the expectation and variance for the distribution of
the posterior for p/(1−p) based on x1, . . . , xN . I don’t care how you do this. You can
either estimate these quantities using Monte Carlo, or work them out analytically.

Problem 4

Provide side-by-side box plots showing your simulation results (both expectations
and variances across each of the three methods). Also, give a brief discussion or your
results and conclusions.

Comments and Potential Pitfalls

While I’ve explained quite a lot in this exercise, you are going to discover “real-world”
issues as you perform this study. Here’s one such issue: when the sample size is small,
some of these estimates might not exist (why?). For instance, in the Bayesian anal-
ysis, the transformed distribution is called a Beta-Prime distribution (look it up on
wiki). Under small sample sizes, the posterior expectation and variance won’t exist
(although the posterior distribution is proper (say what?)). So instead of reporting
the expected value and variance, it might make more sense to report the mode of the
posterior. This is referred to as the MAP (‘Max A-Posteriori’) estimator (how do you
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find this?) and a 95% credible interval (what’s that? what would you report?). So,
you may use your own good judgement in reporting statistics in the various simula-
tion studies.

WWSD?: For the Bayesian analysis, he’d report the MAP and the coverage rate
of the simulated intervals.
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