
Gaussian Processes for Regression:
A Quick Introduction

M. Ebden, August 2008
Comments to mark.ebden@eng.ox.ac.uk

1 MOTIVATION

Figure 1 illustrates a typical example of a prediction problem: given some noisy obser-
vations of a dependent variable at certain values of the independent variable , what is
our best estimate of the dependent variable at a new value, ?

If we expect the underlying function to be linear, and can make some as-
sumptions about the input data, we might use a least-squares method to fit a straight
line (linear regression). Moreover, if we suspect may also be quadratic, cubic, or
even nonpolynomial, we can use the principles of model selection to choose among the
various possibilities.

Gaussian process regression (GPR) is an even finer approach than this. Rather
than claiming relates to some specific models (e.g.), a Gaussian
process can represent obliquely, but rigorously, by letting the data ‘speak’ more
clearly for themselves. GPR is still a form of supervised learning, but the training data
are harnessed in a subtler way.

As such, GPR is a less ‘parametric’ tool. However, it’s not completely free-form,
and if we’re unwilling to make even basic assumptions about , then more gen-
eral techniques should be considered, including those underpinned by the principle of
maximum entropy; Chapter 6 of Sivia and Skilling (2006) offers an introduction.

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

?

x

y

Figure 1: Given six noisy data points (error bars are indicated with vertical lines), we
are interested in estimating a seventh at .

1

2 DEFINITION OF A GAUSSIAN PROCESS

Gaussian processes (GPs) extend multivariate Gaussian distributions to infinite dimen-
sionality. Formally, a Gaussian process generates data located throughout some domain
such that any finite subset of the range follows a multivariate Gaussian distribution.
Now, the observations in an arbitrary data set, , can always be
imagined as a single point sampled from some multivariate (-variate) Gaussian distri-
bution, after enough thought. Hence, working backwards, this data set can be partnered
with a GP. Thus GPs are as universal as they are simple.

Very often, it’s assumed that the mean of this partner GP is zero everywhere. What
relates one observation to another in such cases is just the covariance function, .
A popular choice is the ‘squared exponential’,

(1)

where the maximum allowable covariance is defined as — this should be high for
functions which cover a broad range on the axis. If , then approaches
this maximum, meaning is nearly perfectly correlated with . This is good:
for our function to look smooth, neighbours must be alike. Now if is distant from
, we have instead , i.e. the two points cannot ‘see’ each other. So, for

example, during interpolation at new values, distant observations will have negligible
effect. How much effect this separation has will depend on the length parameter, , so
there is much flexibility built into (1).

Not quite enough flexibility though: the data are often noisy as well, frommeasure-
ment errors and so on. Each observation can be thought of as related to an underlying
function through a Gaussian noise model:

(2)

something which should look familiar to those who’ve done regression before. Re-
gression is the search for . Purely for simplicity of exposition in the next page, we
take the novel approach of folding the noise into , by writing

(3)

where is the Kronecker delta function. (When most people use Gaussian
processes, they keep separate from . However, our redefinition of
is equally suitable for working with problems of the sort posed in Figure 1. So, given
observations , our objective is to predict , not the ‘actual’ ; their expected values
are identical according to (2), but their variances differ owing to the observational noise
process. e.g. in Figure 1, the expected value of , and of , is the dot at .)

To prepare for GPR, we calculate the covariance function, (3), among all possible
combinations of these points, summarizing our findings in three matrices:

...
...

. . .
...

(4)

(5)

Confirm for yourself that the diagonal elements of are , and that its extreme
off-diagonal elements tend to zero when spans a large enough domain.

2

3 HOW TO REGRESS USING GAUSSIAN PROCESSES

Since the key assumption in GP modelling is that our data can be represented as a
sample from a multivariate Gaussian distribution, we have that

(6)

where indicates matrix transposition. We are of course interested in the conditional
probability : “given the data, how likely is a certain prediction for ?”. As
explainedmore slowly in the Appendix, the probability follows a Gaussian distribution:

(7)

Our best estimate for is the mean of this distribution:

(8)

and the uncertainty in our estimate is captured in its variance:

(9)

We’re now ready to tackle the data in Figure 1.

1. There are observations , at

We know from the error bars. With judicious choices of and (more
on this later), we have enough to calculate a covariance matrix using (4):

From (5) we also have and

2. From (8) and (9), and .

3. Figure 1 shows a data point with a question mark underneath, representing the
estimation of the dependent variable at .

We can repeat the above procedure for various other points spread over some portion
of the axis, as shown in Figure 2. (In fact, equivalently, we could avoid the repetition
by performing the above procedure once with suitably larger and matrices.
In this case, since there are 1,000 test points spread over the axis, would be
of size 1,000 1,000.) Rather than plotting simple error bars, we’ve decided to plot

, giving a 95% confidence interval.

3

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Figure 2: The solid line indicates an estimation of for 1,000 values of . Pointwise
95% confidence intervals are shaded.

4 GPR IN THE REAL WORLD

The reliability of our regression is dependent on how well we select the covariance
function. Clearly if its parameters — call them — are not cho-
sen sensibly, the result is nonsense. Our maximum a posteriori estimate of occurs
when is at its greatest. Bayes’ theorem tells us that, assuming we have little
prior knowledge about what should be, this corresponds to maximizing ,
given by

(10)

Simply run your favourite multivariate optimization algorithm (e.g. conjugate gradi-
ents, Nelder-Mead simplex, etc.) on this equation and you’ve found a pretty good
choice for ; in our example, and .

It’s only “pretty good” because, of course, Thomas Bayes is rolling in his grave.
Why commend just one answer for , when you can integrate everything over the many
different possible choices for ? Chapter 5 of Rasmussen andWilliams (2006) presents
the equations necessary in this case.

Finally, if you feel you’ve grasped the toy problem in Figure 2, the next two exam-
ples handle more complicated cases. Figure 3(a), in addition to a long-term downward
trend, has some fluctuations, so we might use a more sophisticated covariance function:

(11)

The first term takes into account the small vicissitudes of the dependent variable, and
the second term has a longer length parameter () to represent its long-term

4

−1 0 1 2 3 4 5 6 7
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

y

−1 0 1 2 3 4 5 6

−4

−2

0

2

4

6

x

y

(a) (b)

Figure 3: Estimation of (solid line) for a function with (a) short-term and long-term
dynamics, and (b) long-term dynamics and a periodic element. Observations are shown
as crosses.

trend. Covariance functions can be grown in this way ad infinitum, to suit the complex-
ity of your particular data.

The function looks as if it might contain a periodic element, but it’s difficult to be
sure. Let’s consider another function, which we’re told has a periodic element. The
solid line in Figure 3(b) was regressed with the following covariance function:

(12)

The first term represents the hill-like trend over the long term, and the second term
gives periodicity with frequency . This is the first time we’ve encountered a case
where and can be distant and yet still ‘see’ each other (that is, for

).
What if the dependent variable has other dynamics which, a priori, you expect to

appear? There’s no limit to how complicated can be, provided is positive
definite. Chapter 4 of Rasmussen and Williams (2006) offers a good outline of the
range of covariance functions you should keep in your toolkit.

“Hang on a minute,” you ask, “isn’t choosing a covariance function from a toolkit
a lot like choosing a model type, such as linear versus cubic — which we discussed
at the outset?” Well, there are indeed similarities. In fact, there is no way to perform
regression without imposing at least a modicum of structure on the data set; such is the
nature of generative modelling. However, it’s worth repeating that Gaussian processes
do allow the data to speak very clearly. For example, there exists excellent theoreti-
cal justification for the use of (1) in many settings (Rasmussen and Williams (2006),
Section 4.3). You will still want to investigate carefully which covariance functions
are appropriate for your data set. Essentially, choosing among alternative functions is
a way of reflecting various forms of prior knowledge about the physical process under
investigation.

5

5 DISCUSSION

We’ve presented a brief outline of the mathematics of GPR, but practical implementa-
tion of the above ideas requires the solution of a few algorithmic hurdles as opposed
to those of data analysis. If you aren’t a good computer programmer, then the code
for Figures 1 and 2 is at ftp://ftp.robots.ox.ac.uk/pub/outgoing/mebden/misc/GPtut.zip,
and more general code can be found at http://www.gaussianprocess.org/gpml.

We’ve merely scratched the surface of a powerful technique (MacKay, 1998). First,
although the focus has been on one-dimensional inputs, it’s simple to accept those of
higher dimension. Whereas would then change from a scalar to a vector,
would remain a scalar and so the maths overall would be virtually unchanged. Second,
the zero vector representing the mean of the multivariate Gaussian distribution in (6)
can be replaced with functions of . Third, in addition to their use in regression, GPs
are applicable to integration, global optimization, mixture-of-experts models, unsuper-
vised learning models, and more — see Chapter 9 of Rasmussen and Williams (2006).
The next tutorial will focus on their use in classification.

REFERENCES

MacKay, D. (1998). In C.M. Bishop (Ed.), Neural networks and machine learning.
(NATO ASI Series, Series F, Computer and Systems Sciences, Vol. 168, pp. 133-
166.) Dordrecht: Kluwer Academic Press.

Rasmussen, C. and C. Williams (2006). Gaussian Processes for Machine Learning.
MIT Press.

Sivia, D. and J. Skilling (2006). Data Analysis: A Bayesian Tutorial (second ed.).
Oxford Science Publications.

APPENDIX

Imagine a data sample taken from some multivariate Gaussian distribution with zero
mean and a covariance given by matrix . Now decompose arbitrarily into two
consecutive subvectors and — in other words, writing would be the
same as writing

(13)

where , , and are the corresponding bits and pieces that make up .
Interestingly, the conditional distribution of given is itself Gaussian-distributed.

If the covariance matrix were diagonal or even block diagonal, then knowing
wouldn’t tell us anything about : specifically, . On the other hand, if
were nonzero, then some matrix algebra leads us to

(14)

The mean, , is known as the ‘matrix of regression coefficients’, and the vari-
ance, , is the ‘Schur complement of in ’.

In summary, if we know some of , we can use that to inform our estimate of what
the rest of might be, thanks to the revealing off-diagonal elements of .

6

Gaussian Processes for Classification:
A Quick Introduction

M. Ebden, August 2008
Prerequisite reading: Gaussian Processes for Regression

1 OVERVIEW

As mentioned in the previous document, GPs can be applied to problems other than
regression. For example, if the output of a GP is squashed onto the range , it can
represent the probability of a data point belonging to one of say two types, and voilà,
we can ascertain classifications. This is the subject of the current document.

The big difference between GPR and GPC is how the output data, , are linked to
the underlying function outputs, . They are no longer connected simply via a noise
process as in (2) in the previous document, but are instead now discrete: say
precisely for one class and for the other. In principle, we could try fitting a
GP that produces an output of approximately for some values of and approximately

for others, simulating this discretization. Instead, we interpose the GP between the
data and a squashing function; then, classification of a new data point involves two
steps instead of one:

1. Evaluate a ‘latent function’ which models qualitatively how the likelihood of
one class versus the other changes over the axis. This is the GP.

2. Squash the output of this latent function onto using any sigmoidal function,
prob .

Writing these two steps schematically,

data, GP latent function, sigmoid class probability, .

The next section will walk you through more slowly how such a classifier operates.
Section 3 explains how to train the classifier, so perhaps we’re presenting things in
reverse order! Section 4 handles classification when there are more than two classes.

Before we get started, a quick note on . Although other forms will do, here
we will prescribe it to be the cumulative Gaussian distribution, . This -shaped
function satisfies our needs, mapping high into , and low into .

A second quick note, revisiting (6) and (7) in the first document: confirm for your-
self that, if there were no noise (), the two equations could be rewritten as

(1)

and

(2)

1

2 USING THE CLASSIFIER

Suppose we’ve trained a classifier from input data, , and their corresponding expert-
labelled output data, . And suppose that in the process we formed some GP outputs
corresponding to these data, which have some uncertainty but mean values given by
. We’re now ready to input a new data point, , in the left side of our schematic, in
order to determine at the other end the probability of its class membership.

In the first step, finding the probability is similar to GPR, i.e. we adapt (2):

(3)

(will be explained soon, but for now consider it to be very similar to .) In the
second step, we squash to find the probability of class membership,

. The expected value is

(4)

This is the integral of a cumulative Gaussian times a Gaussian, which can be solved
analytically. By Section 3.9 of Rasmussen and Williams (2006), the solution is:

(5)

An example is depicted in Figure 1.

3 TRAINING THE GP IN THE CLASSIFIER

Our objective now is to find and , so that we know everything about the GP pro-
ducing (3), the first step of the classifier. The second step of the classifier does not
require training as it’s a fixed sigmoidal function.

Among the many GPs which could be partnered with our data set, naturally we’d
like to compare their usefulness quantitatively. Considering the outputs of a certain
GP, how likely they are to be appropriate for the training data can be decomposed using
Bayes’ theorem:

(6)

Let’s focus on the two factors in the numerator. Assuming the data set is i.i.d.,

(7)

Dropping the subscripts in the product, is informed by our sigmoid function,
. Specifically, is by definition, and to complete the picture,

. A terse way of combining these two cases is to write
.

The second factor in the numerator is . This is related to the output of the
first step of our schematic drawing, but first we’re interested in the value of
which maximizes the posterior probability . This occurs when the derivative

2

−20 −10 0 10 20

−10

−8

−6

−4

−2

0

2

4

6

8

10

x

La
te

nt
 fu

nc
tio

n
f(x

)
−20 −10 0 10 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Pr
ed

ict
ive

 p
ro

ba
bi

lity

Figure 1: (a) Toy classification dataset, where circles and crosses indicate class mem-
bership of the input (training) data , at locations . is for one class and for
another, but for illustrative purposes we pretend instead of in this figure.
The solid line is the (mean) probability prob , i.e. the ‘answer’ to our
problem after successfully performing GPC. (b) The corresponding distribution of the
latent function , not constrained to lie between 0 and 1.

of (6) with respect to is zero, or equivalently and more simply, when the derivative
of its logarithm is zero. Doing this, and using the same logic that produced (10) in the
previous document, we find that

(8)

where is the best for our problem. Unfortunately, appears on both sides of the
equation, so we make an initial guess (zero is fine) and go through a few iterations. The
answer to (8) can be used directly in (3), so we’ve found one of the two quantities we
seek therein.

The variance of is given by the negative second derivative of the logarithm of (6),
which turns out to be , with . Making a Laplace
approximation, we pretend is Gaussian distributed, i.e.

(9)

(This assumption is occasionally inaccurate, so if it yields poor classifications, bet-
ter ways of characterizing the uncertainty in should be considered, for example via
expectation propagation.)

3

Now for a subtle point. The fact that can vary means that using (2) directly is in-
appropriate: in particular, its mean is correct but its variance no longer tells the whole
story. This is why we use the adapted version, (3), with instead of . Since the
varying quantity in (2), , is beingmultiplied by , we add cov
to the variance in (2). Simplification leads to (3), in which .

With the GP now completely specified, we’re ready to use the classifier as described
in the previous section.

GPC in the Real World
As with GPR, the reliability of our classification is dependent on how well we select
the covariance function in the GP in our first step. The parameters are ,
one fewer now because . However, as usual, is optimized by maximizing

, or (omitting on the righthand side of the equation),

(10)

This can be simplified, using a Laplace approximation, to yield

(11)

This is the equation to run your favourite optimizer on, as performed in GPR.

4 MULTI-CLASS GPC

We’ve described binary classification, where the number of possible classes, , is just
two. In the case of classes, one approach is to fit an for each class. In the first
of the two steps of classification, our GP values are concatenated as

(12)

Let be a vector of the same length as which, for each , is for the class
which is the label and for the other entries. Let grow to being block diagonal
in the matrices . So the first change we see for is a lengthening
of the GP. Section 3.5 of Rasmussen and Williams (2006) offers hints on keeping the
computations manageable.

The second change is that the (merely one-dimensional) cumulative Gaussian dis-
tribution is no longer sufficient to describe the squashing function in our classifier;
instead we use the softmax function. For the th data point,

(13)

where is a nonconsecutive subset of , viz. . We can summa-
rize our results with .

Now that we’ve presented the two big changes needed to go from binary- to multi-
class GPC, we continue as before. Setting to zero the derivative of the logarithm of the
components in (6), we replace (8) with

(14)

The corresponding variance is as before, but now diag ,
where is a matrix obtained by stacking vertically the diagonal matrices
diag , if is the subvector of pertaining to class .

4

With these quantities estimated, we have enough to generalize (3) to

diag (15)

where , , and represent the class-relevant information only. Finally, (11) is
replaced with

(16)

We won’t present an example of multi-class GPC, but hopefully you get the idea.

5 DISCUSSION

As with GPR, classification can be extended to accept values with multiple dimen-
sions, while keeping most of the mathematics unchanged. Other possible extensions
include using the expectation propagation method in lieu of the Laplace approximation
as mentioned previously, putting confidence intervals on the classification probabili-
ties, calculating the derivatives of (16) to aid the optimizer, or using the variational
Gaussian process classifiers described in MacKay (1998), to name but four extensions.

Second, we repeat the Bayesian call from the previous document to integrate over
a range of possible covariance function parameters. This should be done regardless
of how much prior knowledge is available — see for example Chapter 5 of Sivia and
Skilling (2006) on how to choose priors in the most opaque situations.

Third, we’ve again spared you a few practical algorithmic details; computer code
is available at http://www.gaussianprocess.org/gpml, with examples.

ACKNOWLEDGMENTS

Thanks are due to Prof Stephen Roberts and members of his Pattern Analysis Research
Group, as well as the ALADDIN project (www.aladdinproject.org).

REFERENCES

MacKay, D. (1998). In C.M. Bishop (Ed.), Neural networks and machine learning.
(NATO ASI Series, Series F, Computer and Systems Sciences, Vol. 168, pp. 133-
166.) Dordrecht: Kluwer Academic Press.

Rasmussen, C. and C. Williams (2006). Gaussian Processes for Machine Learning.
MIT Press.

Sivia, D. and J. Skilling (2006). Data Analysis: A Bayesian Tutorial (second ed.).
Oxford Science Publications.

5

