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Abstract

This paper develops a Bayesian model comparison for two broad major classes of varying
volatility model, GARCH and stochastic volatility (SV) models on financial time series.
The leverage effect, jumps and heavy-tailed errors are incorporated into the two models.
For estimation, the efficient Markov chain Monte Carlo methods are developed and the
model comparisons are examined based on the marginal likelihood. The empirical analyses
are illustrated using the daily return data of US stock indices, individual securities and
exchange rates of UK Sterling and Japanese Yen against US Dollar. The estimation results
indicate that the SV model with leverage and Student-t errors yields the best performance
among the competing models on the return data.
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1 Introduction

The time-varying volatility models have been widely used in various contexts of a time series

analysis. Two main streams of modeling a changing variance, the GARCH (generalized au-

toregressive conditional heteroskedasticity) and the stochastic volatility (SV) model, are well

established in financial econometrics. Numerous papers develop their extensions, and these

specifications are more and more often applied for empirical analyses in financial economics

and macroeconomics. Among them, this paper focuses on three common factors, namely

leverage effects, jumps and heavy-tailed errors, which are stressed in literature as important

elements to capture the behaviors of financial time series such as stock price and exchange

rates.

The GARCH specification, proposed by Bollerslev (1986), formulates the serial dependence

of volatility and incorporates the past observations into the future volatility (e.g., Bollerslev

et al. (1994)). Nelson (1991) proposes the EGARCH (exponential GARCH) specification,

modeling the leverage effect, which refers to the increase in volatility following a previous

drop in stock returns (Black (1976)). Glosten et al. (1993) extends the GARCH model with

leverage effect in another way, called the GJR model. These models came to be standards of

the so-called asymmetric GARCH model. As for the jump specification, Jorion (1988) firstly

introduces the GARCH model with jumps, and later, more complicated jump dynamics are

developed by several papers (e.g., Chan and Maheu (2002), Maheu and McCurdy (2004)).

In the other stream, the SV models, based on the continuous-time probability process,

have also been well studied in financial econometrics (see e.g., Ghysels et al. (2002), Shephard

(2005)). Among their generalizations, the leverage effect, jump components and heavy-tailed

errors in stock returns are well-known to be important for financial time series in the recent

literature (Chib et al. (2002), Jacquier et al. (2004), Berg et al. (2004), Yu (2005), Omori et al.

(2007), Nakajima and Omori (2009)). The SV model with Student-t errors is one of the most

popular models to account for heavier tailed returns. However, it has been found insufficient to

express the tail fatness of returns to some extents. The jump components have recently been

introduced to explain the tail behavior (Eraker et al. (2003), Nakajima and Omori (2009)).

Various specifications of the SV-jump models are compared in empirical studies (Chernov et al.

(2003), Raggi and Bordignon (2006), Li et al. (2008)).

The purpose of this paper is to compare the fit of the models in the class of the GARCH

and the SV model with leverage, jumps and heavy-tails. The GARCH and the SV models

have not been compared directly, especially in the classes with the assumptions of these three
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components. Several studies (Kim et al. (1998), Giot and Laurent (2004)) examine the model

comparisons among the models in the two classes. Lehar et al. (2002) provides a model

comparison between the GARCH and the SV models from an option pricing point of view.

The major reason which makes it difficult to compare the GARCH and the SV class is

that the likelihood function of the SV model is not easily available. It is possible to compute

the likelihood using a simulation-based method for a given set of parameters, but it requires

a computational burden since we need to repeat the filtering procedure for many times to

evaluate the likelihood function for each set of parameters until it reaches the maximum. To

overcome this difficulty, we take a Bayesian estimation approach with the MCMC methods

(e.g., Chib and Greenberg (1996)) for a precise and efficient estimation of the SV model. In

the SV literature, Kim et al. (1998) develop a fast and reliable MCMC algorithm, called mixture

sampler. Using this method, the jumps and heavy-tails (Chib et al. (2002)), the leverage and

heavy-tails (Omori et al. (2007)), and the leverage, jumps and heavy-tails (Nakajima and

Omori (2009)) are incorporated into the SV model.

On the other hand, Bauwens and Lubrano (1998), Vrontos et al. (2000), Nakatsuma (2000)

develop the MCMC estimation method for the models in the GARCH class. In this paper the

MCMC algorithms for the GARCH and the SV model with leverage, jumps and heavy-tails

are developed. This paper adopts the Bayesian model comparison for both the GARCH and

the SV models based on the marginal likelihood, which can be computed by the technique of

Chib (1995), Chib and Jeliazkov (2001, 2005).

The rest of paper is organized as follows. In Section 2, the MCMC estimation method for

the GARCH model with leverage, jumps and heavy-tails is developed. Section 3 reviews the

MCMC estimation scheme for the SV model with leverage, jumps and heavy-tails. In Section

4, we show the estimation results of the Bayesian model comparison among competing models

using daily US stock returns. Section 5 provides the model comparison of daily exchange rates

of UK Sterling and Japanese Yen against US Dollar. In Section 6, the robustness of the model

comparison is examined with respect to sample period and prior sensitivity. Finally, Section 7

concludes.
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2 Bayesian inference for the GARCH model with leverage,

jumps and heavy-tails

2.1 The model

We first consider a standard GARCH(1, 1) model with jumps and heavy-tails formulated as

yt = Et−1(yt) + et, (1)

et = ktγt +
√

λtεtσt, εt ∼ N(0, 1), t = 1, . . . , n, (2)

σ2
t = ω + βσ2

t−1 + αe2
t−1, t = 2, . . . , n, (3)

where yt is a stock return, σ2
t is a conditional variance, ω > 0, β,α ≥ 0, and β + α < 1. The

ktγt represents a jump component in the equation (2). Following Jorion (1988), the γt is a

jump flag defined as a Bernoulli random variable such that

π(γt = 1) = κ, π(γt = 0) = 1− κ, 0 < κ < 1,

and the kt is a jump size specified as kt ∼ N(0, δ2), where the jump parameters, κ and δ, are

unknown and to be estimated. The measurement error
√

λtεt is assumed to follow a Student-t

distribution, which is a standard heavy-tailed distribution, with unknown degrees of freedom

ν by letting

λ−1
t ∼ Gamma(ν/2, ν/2).

We label the model (1)–(3) the GARCHJt model. When λt ≡ 1 for all t, the model reduces to

the GARCH model with normal errors, namely the GARCH (without jumps), or the GARCHJ

model (with jumps). The GARCHt model is the one with the Student-t errors without jumps,

which omits the ktγt from the equation (2). For simplicity, we assume log σ2
1 = (ω+ακδ2)/(1−

α− β).

Next, we introduce an EGARCH(1, 1) model with jumps, heavy-tails formulated as

yt = Et−1(yt) + et, (4)

et = ktγt +
√

λtσtεt, εt ∼ N(0, 1), t = 1, . . . , n, (5)

log σ2
t = ω + β log σ2

t−1 + θ
et−1

σt−1
+ α

(∣∣∣∣
et−1

σt−1

∣∣∣∣− ζ
)

, t = 2, . . . , n, (6)
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where 0 < β < 1, ζ = E[|z|] where z is a random variable which follows a Student-t distribution

with degrees of freedom ν. The EGARCH model can be interpreted as the GARCH model

incorporated the leverage effect. If the coefficient θ is negative, it measures the leverage effect,

which implies the increase in volatility following a previous drop in the stock return. We label

the model (4)–(6) the EGARCHJt model. Similarly to the reduced models in the GARCHJt

class, we consider the EGARCHJ (with normal errors and jumps), EGARCHt (with Student-t

errors but without jumps), and the EGARCH (with normal errors but without jumps) model.

Finally, we assume log σ2
1 = ω/(1− β) for the EGARCHJt class.

2.2 MCMC algorithm

As shown in many studies, the parameter estimates of the GARCH and the EGARCH model

can be obtained by the maximum likelihood estimation. In this paper, alternatively, a Bayesian

inference using the MCMC algorithm is applied to provide the model comparison including

the SV class whose likelihood is not easily available.

Let y = {yt}n
t=1, γ = {γt}n

t=1, λ = {λt}n
t=1, and ϑ = (ω,β, θ, α) (θ is omitted in the case

of the GARCHJt class). We set the prior probability density, π(ϑ), π(κ), π(δ), and π(ν)

for ϑ, κ, δ and ν. Deriving the posterior distribution of the GARCHJt and the EGARCHJt

model,

π(ϑ,κ, δ, ν, γ,λ|y),

we develop the procedure to sample from this posterior distribution by the MCMC technique

as follows:

Algorithm 1: MCMC algorithm for the GARCHJt and the EGARCHJt model

1. Initialize ϑ,κ, δ, ν, γ and λ.

2. Sample ϑ|δ, γ, λ, y.

3. Sample (δ, γ)|ϑ,κ, λ, y by

(a) Sampling δ|ϑ,κ, λ, y,

(b) Sampling γ|ϑ, κ, δ,λ, y.

4. Sample κ|ϑ, δ, γ, λ, y.
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5. Sample (λ, ν)|ϑ, δ, γ, y by

(a) Sampling λ|ϑ, δ, ν, γ, y,

(b) Sampling ν|λ.

6. Go to 2.

We show the details of the MCMC algorithm in Appendix. We note that a marginalization of

the conditional posterior density for some parameters enables us to accelerate the convergence

of the MCMC sampling. In the algorithm, the likelihood function of the GARCHJt and the

EGARCHJt model can be marginalized on the state variable for the jumps, namely kt. In

addition, the conditional posterior density of δ can be marginalized on γ in step 3(a). The

performance of the algorithm is examined with simulated data below.

2.3 Simulation study for the EGARCHJt model

For simulation study of the proposed MCMC algorithm, 3,000 observations from the EGARCHJt

model are generated with the parameters ω = −0.2, β = 0.98, θ = −0.05, α = 0.15, κ = 0.01,

δ = 0.03, and ν = 10. The following prior distributions are assumed:

ω ∼ N(0, 1), β ∼ Beta(8, 1), θ ∼ N(0, 1), α ∼ N(0, 1),

κ ∼ Beta(2, 100), δ ∼ N(5, 0.05), ν ∼ Gamma(16, 0.8).

These prior distributions and the parameters for simulated data reflect the values obtained in

the past literature to some extents.

We draw M = 5,000 sample after the initial 10,000 sample are discarded. The compu-

tational results are generated using Ox version 4.02 (Doornik (2006)). Figure 1 shows the

sample autocorrelation functions, the sample paths and the posterior densities for each pa-

rameter. After discarding sample in burn-in period, the sample paths look stable and the

sample autocorrelations drop quickly. This indicates that our sampling method produces the

uncorrelated sample efficiently.

Table 1 gives the estimates for posterior means, standard deviations and the 95% credible

intervals. All estimated posterior means are close to the true values and the true values are

contained in the 95% credible intervals. The inefficiency factors are also reported to check the

performance of our sampling efficiency. The inefficiency factor is defined as 1+2
∑∞

s=1 ρs where

ρs is the sample autocorrelation function at lag s. It is the ratio of variance of the posterior
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Figure 1: Estimation result of the EGARCHJt model for the simulated data. Sample autocor-
relations (top), sample paths (middle) and posterior densities (bottom).

Parameter True Mean Stdev. 95% interval Inefficiency
ω -0.2 -0.2194 0.0524 [-0.3338, -0.1244] 34.17
β 0.98 0.9775 0.0058 [0.9649, 0.9881] 34.72
θ -0.05 -0.0673 0.0125 [-0.0924, -0.0411] 7.57
α 0.15 0.1801 0.0215 [0.1411, 0.2261] 12.11
κ 0.01 0.0270 0.0134 [0.0077, 0.0595] 64.97
δ 0.03 0.0276 0.0074 [0.0137, 0.0436] 38.63
ν 10.0 12.9531 3.5755 [7.2511, 20.921] 122.87

Table 1: Estimation result of the EGARCHJt model for the simulated data.
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mean from the correlated draws to the one from the hypothetical uncorrelated sample, which

measures the loss of sampling efficiency in our correlated MCMC draws (see e.g., Chib (2001)).

In the estimation, it is computed with a bandwidth 500. The estimated inefficiency factors in

Table 1 are low enough, which assures the successful sampling without loss of efficiency.

2.4 Alternative jump specification

As an alternative model to incorporate the jump components into the EGARCH model, it

would be possible to formulate the model as

yt = Et−1(yt) + et,

et = ktγt + σtεt, εt ∼ N(0, 1), t = 1, . . . , n,

log σ2
t = ω + β log σ2

t−1 + θεt−1 + α(|εt−1|− E(|εt−1|)), t = 2, . . . , n,

where εt−1 = (et−1 − kt−1γt−1)/σt−1. Here, the jump component does not affect the volatility

process. In this specification, however, the conditional posterior distributions for jump vari-

ables are not easily computed because the value of the jump variables, kt and γt, are state

variables to be sampled in the MCMC algorithm, while the kt and γt affect all the volatility

from time t to n. The draw of {kt}n
t=1 and {γt}n

t=1 requires so much time that it would be

almost unfeasible to implement the MCMC procedure. Because of this difficulty, we choose

the specification of equation (5) and (6) for the EGARCHJt model in this paper.

3 Bayesian inference for the SV model with leverage, jumps

and heavy-tails

3.1 The model

We consider a discrete-time SV model formulated as

yt = Et−1(yt) + et, (7)

et = ktγt +
√

λtεt exp(ht/2), t = 1, . . . , n, (8)

ht+1 = µ + φ(ht − µ) + ηt, t = 1, . . . , n− 1, (9)
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where ht is an unobserved log-volatility, |φ| < 1, h1 ∼ N(0,σ2/(1− φ2)),



 εt

ηt



 ∼ N(0, Σ), and Σ =



 1 ρσ

ρσ σ2



 .

The correlation coefficient ρ measures the leverage effect and ρ = 0 implies the SV model

without leverage effect. We introduce a jump component ktγt in the measurement equation

(8). The γt is a jump flag defined as a Bernoulli random variable defined in the previous

section, and the kt is a jump size specified by

ψt ≡ log(1 + kt) ∼ N(−0.5δ2, δ2), (10)

following Andersen et al. (2002), Chib et al. (2002). Though this specification of the jump

size is different from the one incorporated into the GARCHJt and the EGARCHJt model in

the previous section, the distribution (10) is derived from a discretization of a Lévy process,

which is used in the continuous time modeling of financial asset pricing. We label the model

defined by equation (8) and (9) as the SVLJt model and consider the following reduced models;

SVLJ (with normal errors and jumps), SVLt (with Student-t errors but without jumps), the

SVL (with normal errors but without jumps) model and the model without leverage for each

specification, namely the SVJt, the SVJ, SVt and SV model, respectively. For simplicity, we

compute yt by a log-return of the stock price, demean it by the sample mean, and assume that

Et−1(yt) ≡ 0, throughout the paper.

3.2 Auxiliary mixture sampler

Following Omori et al. (2007), we define y∗t = log(yt − ktγt)2 − log λt, dt = sign(yt − ktγt) =

I(εt > 0)− I(εt ≤ 0), which rewrite the equation (7) and (8) as

y∗t = ht + ξt, (11)

where ξt = log ε2
t . Omori et al. (2007) propose to approximate the bivariate conditional

density of (ξt, ηt)|dt by a ten-component mixture of bivariate normal distribution, which is

an exhaustive extension of Kim et al. (1998) approach. The key essence of their approach

is that the model (11) and (9) can be approximated to a linear Gaussian state space model
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i pi mi v2
i ai bi

1 0.00609 1.92677 0.11265 1.01418 0.50710
2 0.04775 1.34744 0.17788 1.02248 0.51124
3 0.13057 0.73504 0.26768 1.03403 0.51701
4 0.20674 0.02266 0.40611 1.05207 0.52604
5 0.22715 −0.85173 0.62699 1.08153 0.54076
6 0.18842 −1.97278 0.98583 1.13114 0.56557
7 0.12047 −3.46788 1.57469 1.21754 0.60877
8 0.05591 −5.55246 2.54498 1.37454 0.68728
9 0.01575 −8.68384 4.16591 1.68327 0.84163
10 0.00115 −14.65000 7.33342 2.50097 1.25049

Table 2: Selection of (pi,mi, v2
i , ai, bi) proposed by Omori et al. (2007).

conditioned on the mixture component indicator st ∈ {1, 2, . . . , K} as



 y∗t

ht+1



 =



 ht

µ + φ(ht − µ)



 +



 ξt

ηt



 , (12)

where







 ξt

ηt



 |dt, (st = i)





L=



 mi + viz1t

dtρσ(ai + biviz1t) exp(mi/2) + σ
√

1− ρ2z2t



 ,

for i = 1, 2, . . . , K, and zt = (z1t, z2t)′ ∼ N(0, I2). Given s = {s1, . . . , sn}, we can sample the

latent variable h = {h1, . . . , hn} in one block from its joint distribution using the simulation

smoother for a linear Gaussian state space model (de Jong and Shephard (1995), Durbin and

Koopman (2002)). The mixture component parameters are provided by Omori et al. (2007) in

the case of K = 10 (reproduced in Table 2). Note that (mi, vi, ai, bi) do not depend on model

parameters, θ ≡ (φ,σ, ρ) and µ.

3.3 MCMC algorithm

Let y∗ = {y∗t }n
t=1, d = {dt}n

t=1, k = {kt}n
t=1, and we set the prior probability density π(θ),

π(µ), π(κ), π(δ), and π(ν) for θ, µ, κ, δ, and ν. Then, we draw sample from the posterior

distribution

π(θ, µ, κ, δ, ν, s, h, k, γ, λ|y),
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by the MCMC algorithm. Let us reparameterize kt by ψt ≡ log(1 + kt) and denote ψ =

{ψt}n
t=1, ψ(0) = {ψt|t = 1, . . . , n, s.t. γt = 0}, ψ(1) = {ψt|t = 1, . . . , n, s.t. γt = 1}. Following

Omori et al. (2007), we use the following sampling algorithm.

Algorithm 2: MCMC algorithm for the SVLJt model

1. Initialize θ, µ, κ, δ, ν, s, h, ψ, γ and λ.

2. Sample (θ, µ, h)|s, y∗, d by

(a) Sampling θ|s, y∗, d,

(b) Sampling (µ, h)|θ, s, y∗, d.

3. Sample ψ(1)|θ, µ, δ, h, γ, λ, y.

4. Sample (δ,ψ(0))|ψ(1), γ by

(a) Sampling δ|ψ(1), γ,

(b) Sampling ψ(0)|δ, γ.

5. Sample (γ, s)|θ, µ,κ, h, ψ,λ, y by

(a) Sampling γ|θ, µ, κ, h,ψ, λ, y,

(b) Sampling s|θ, µ, h, y∗, d.

6. Sample κ|γ.

7. Sample (λ, ν)|θ, µ, s, h, ψ, γ, y by

(a) Sampling λ|θ, µ, ν, s, h, ψ, γ, y,

(b) Sampling ν|λ.

8. Go to 2.

The details of the algorithm is developed by Nakajima and Omori (2009). They provide a

simulation study, which shows an efficient performance of the MCMC algorithm for the SVLJt

model.
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3.4 Alternative jump specification

The EGARCHJt model defined by equation (5) and (6) has the jumps which affect the volatility

process, while the SVLJt model defined by equation (8) and (9) has the jumps which do not

affect the volatility. As mentioned in section 2.4, it is unfeasible to estimate the EGARCHJt

model with jumps which do not affect the volatility. Alternatively, we consider another SV

model with jumps which do affect the volatility in order to compare with the EGARCHJt

class.

We consider the SV model with correlated jumps (we SVLCJ model) given by

yt = Et−1(yt) + et,

et = ktγt + εt exp(ht/2), t = 1, . . . , n, (13)

ht+1 = µ + φ(ht − µ) + jtγt + ηt, t = 1, . . . , n− 1. (14)

The equations (13) and (14) have a common jump indicator variable, γt, to model the jumps

that occur concurrently both in return and in volatility so that the jumps affect the volatility

process. The joint distribution of jump sizes is assumed to be

jt ∼ Exp(µJ),

kt|jt ∼ N(µk + βJjt, σ2
k),

where Exp denotes the exponential distribution. The correlation between jump sizes in return

and in volatility is considered by the parameter βJ . This type of jumps in the SV model is

studied in the recent literature (e.g., Eraker et al. (2003), Kobayashi (2006)). Nakajima and

Omori (2009) compare the SVLCJ model with the models in the SVLJt class. We also include

the SVLCJ model for the model comparison in this paper.

4 Application to stock return data

4.1 Data

We estimate the models in the EGARCHJt and the SVLJt class for daily stock returns. The

series are two US stock price indices; S&P500 and NASDAQ; and two US individual stocks;

GM (General Motors) and IBM (International Business Machines). The sample period is from

January 1992 to December 2006. The log-difference returns are computed as yt = log Pt −
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log Pt−1, and demeaned, where Pt is the closing price on the business day t. The sample

size is 3,781 for each series. Table 3 summarizes the descriptive statistics and Figure 2 plots

the four series of daily return. Note that the statistics are based on the return data before

demeaned. Regarding the higher order moments, in Table 3, the skewness of the S&P500 series

is negative, while two individual stocks have slightly positive skewnesses. The kurtosis of each

series is around seven to nine, which is clearly larger than the one of a normal distribution.

Mean Stdev. Skewness Kurtosis Max. Min.
S&P500 0.0003 0.010 -0.109 7.200 0.056 -0.071
NASDAQ 0.0004 0.016 0.002 8.616 0.133 -0.102
GM 0.0002 0.021 0.083 6.739 0.166 -0.151
IBM 0.0004 0.020 0.017 9.688 0.124 -0.169

Table 3: Summary statistics for the daily stock return data (1992/Jan – 2006/Dec, n = 3, 781).
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Figure 2: The time-series plots for four stock returns (1992/Jan – 2006/Dec).
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4.2 Parameter estimates

We report the results for the parameter estimation of the EGARCHJt and the SVLJt model

for the S&P500 series. The priors for the GARCHJt and the EGARCHJt class, the same

settings are used as Section 2.3. For the SVLJt class, we assume the following prior:

φ + 1
2

∼ Beta(20, 1.5), σ−2 ∼ Gamma(2.5, 0.025),

ρ ∼ U(−1, 1), µ ∼ N(−10, 1), κ ∼ Beta(2, 100),

log(δ) ∼ N(−2.5, 0.15), ν ∼ Gamma(16, 0.8).

As suggested by Kim et al. (1998) for the estimation of the SV model using the mixture

sampler, we take y∗t = log((yt − ktγt)2 + c), where c is an offset for the case where (yt − ktγt)2

is too small. We set c = 10−7 in this paper. The number of MCMC iterations is same as the

simulation study.

Table 4 reports the parameter estimates of the EGARCHJt and the SVLJt model for the

S&P500 returns. Figure 3 and 4 plot the sampling results for the EGARCHJt and the SVLJt

model respectively. The estimates of the volatility parameters (ω,β, θ,α) and (φ,σ, ρ, exp(µ/2))

are consistent with the results of the previous literature (e.g., Vrontos et al. (2000), Nakajima

and Omori (2009)). For both two models, the posterior means of β and φ are close to one,

which implies a well-known high persistence of volatility on stock returns. The parameters θ

and ρ are estimated negative and the 95% credible intervals do not contain zero. This indicates

that there exists the leverage effect in our stock return data.

We find that there are specific differences for the estimates of the jump parameters between

the EGARCHJt and the SVLJt model. The posterior mean of κ for the EGARCHJt model is

about 3%, while the one for the SVLJt model is much smaller, 0.09%. This indicates that the

EGARCHJt model more often captures the excess returns by the jump component than the

SVLJt model. Though we can not compare the jump sizes between the two models directly

because the specifications of the jump size are different, if we calculate the standard deviation

of the jump size for the SVLJt model using the posterior mean of δ, it is 0.0996 for the SVLJt

model and 0.0098 for the EGARCHJt model. The empirical results show that the SVLJt

model captures larger excess returns by the jump component with the smaller probability than

the EGARCHJt model. This would be caused from the difference of the specification of the

volatility process and the jump component between the two models. The SV models have the

disturbance for their volatility process, while the EGARCH models do not have it and the
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Parameter Mean Stdev. 95% interval Inefficiency

EGARCHJt model
ω -0.1299 0.0223 [-0.1740, -0.0895] 19.20
β 0.9879 0.0022 [0.9834, 0.9920] 19.14
θ -0.0880 0.0103 [-0.1097, -0.0693] 10.79
α 0.1051 0.0116 [0.0836, 0.1279] 9.74
κ 0.0307 0.0182 [0.0064, 0.0730] 49.33
δ 0.0098 0.0027 [0.0058, 0.0166] 22.36
ν 13.9744 2.8954 [9.7847, 20.816] 59.79

SVLJt model
φ 0.9864 0.0029 [0.9800, 0.9916] 12.54
σ 0.1373 0.0134 [0.1119, 0.1648] 13.91
ρ -0.7327 0.0412 [-0.8044, -0.6450] 10.54

exp(µ/2) 0.0090 0.0006 [0.0079, 0.0103] 1.77
κ 0.0009 0.0007 [0.0001, 0.0026] 3.80
δ 0.0993 0.0525 [0.0334, 0.2192] 62.60
ν 20.8137 4.1579 [14.505, 30.931] 175.81

Table 4: Estimation results for S&P500 returns.

volatility on the next day is determined by the return and the volatility on the current day. In

other words, the volatility process of the SV models can move more flexibly than the EGARCH

models. In short, when the return marks a certain excess shock, if the effect of the shock is

not persistent, the volatility process of the SVLJt model would capture the shock, while the

EGARCHJt would capture it by the jump component.

In addition, the posterior mean of the parameter ν for the EGARCHJt model is smaller

than the one for the SVLJt model. As discussed by Nakajima and Omori (2009), the model

whose jump probability is estimated to be smaller tends to have a heavier-tailness of the errors.

It is considered that the jump component captures less excess returns, when the errors have

the heavier-tails.

4.3 Model comparisons

In a Bayesian framework, we can compare a model fit based on a marginal likelihood or a

Bayes factor. When the prior probabilities are assumed to be equal, we choose the model

which yields the largest marginal likelihood. In order to compare the competing models in the

GARCHJt, the EGARCHJt and the SVLJt class, we estimate their marginal likelihood for the

return data.

The marginal likelihood is defined as the integral of the likelihood with respect to the prior

density of the parameter. Following Chib (1995), we estimate the log of marginal likelihood,
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Figure 3: Estimation result of the S&P500 returns (EGARCHJt model). Sample autocorrela-
tions (top), sample paths (middle) and posterior densities (bottom).

denoted by m(y), as

log m(y) = log f(y|Θ) + log π(Θ)− log π(Θ|y),

where Θ is a parameter set in the model, f(y|Θ) is a likelihood, π(Θ) is a prior probability

density and π(Θ|y) is a posterior density. This equality holds for any Θ, but we usually use the

posterior mean of Θ to obtain a stable estimate of m(y). The prior probability density is easily

calculated, though the likelihood and posterior part requires a simulation evaluation. For the

SVLJt class, the likelihood can be estimated by the particle filter (e.g., Pitt and Shephard

(1999), Chib et al. (2002), Omori et al. (2007)). For the posterior part, we use the method of

Chib (1995), Chib and Jeliazkov (2001, 2005) to compute π(Θ|y) using the sample obtained

through the reduced iteration of the MCMC algorithm.

We show the results of the model comparison for the 17 competing models of two classes

including the SVLCJ model, for four stock return data. For the GARCHJt class, we assume
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Figure 4: Estimation result of the S&P500 returns (SVLJt model). Sample autocorrelations
(top), sample paths (middle) and posterior densities (bottom).

the priors as following:

ω−1 ∼ Gamma(5, 5× 10−4), α ∼ Beta(3, 3), β(1− α)|α ∼ Beta(8, 1),

θ ∼ U(0, 1− α− β), κ ∼ Beta(2, 100),

δ ∼ N(5, 0.05), ν ∼ Gamma(16, 0.8).

For the SVLCJ model, we assume the following priors:

µJ ∼ Exp(0.2), βJ ∼ N(0, 1),

µk ∼ N(0, 1), σ−2
k ∼ Gamma(2.5, 0.025).

We evaluate the posterior density at the posterior mean for Θ through the reduced MCMC

sampling, which is iterated for 5,000 draws. We run ten replications of the particle filter to

estimate the standard error of the likelihood.
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S&P500 NASDAQ
Model Log-ML Ranking Log-ML Ranking
GARCH 12578.42 (0.01) 17 11300.17 (0.01) 17
GARCHt 12621.00 (0.26) 14 11321.13 (0.18) 14
GARCHJ 12606.61 (0.02) 16 11317.49 (0.04) 16
GARCHJt 12618.57 (0.22) 15 11319.88 (0.19) 15
EGARCH 12661.70 (0.09) 9 11345.23 (0.06) 11
EGARCHt 12702.52 (0.68) 3 11367.52 (0.93) 5
EGARCHJ 12692.14 (0.12) 7 11369.65 (0.11) 3
EGARCHJt 12703.09 (0.46) 2 11368.57 (0.61) 4
SV 12650.05 (0.43) 12 11349.39 (0.76) 10
SVt 12660.25 (0.80) 10 11350.26 (1.18) 9
SVJ 12644.53 (0.78) 13 11334.23 (2.51) 13
SVJt 12653.52 (0.80) 11 11344.76 (0.94) 12
SVL 12702.21 (0.43) 4 11374.48 (0.83) 2
SVLt 12708.90 (0.66) 1 11375.05 (0.98) 1
SVLJ 12697.26 (1.14) 6 11358.97 (2.42) 7
SVLJt 12702.03 (0.79) 5 11363.84 (0.91) 6
SVLCJ 12691.27 (1.02) 8 11358.49 (0.78) 8

GM IBM
Model Log-ML Ranking Log-ML Ranking
GARCH 9385.76 (0.01) 17 9937.35 (0.01) 17
GARCHt 9492.06 (0.81) 5 10035.42 (0.57) 9
GARCHJ 9477.39 (0.06) 11 10026.50 (0.03) 12
GARCHJt 9481.35 (0.59) 8 10030.32 (0.45) 11
EGARCH 9401.47 (0.02) 16 9974.36 (0.01) 16
EGARCHt 9493.83 (0.66) 2 10046.06 (0.55) 6
EGARCHJ 9479.09 (0.08) 10 10037.06 (0.03) 8
EGARCHJt 9492.36 (0.70) 3 10038.00 (0.27) 7
SV 9471.54 (0.40) 13 10022.87 (0.45) 14
SVt 9475.38 (0.54) 12 10060.31 (1.24) 4
SVJ 9468.12 (1.02) 15 10019.30 (1.38) 15
SVJt 9469.80 (0.92) 14 10049.99 (1.21) 5
SVL 9490.23 (0.22) 6 10034.99 (0.43) 10
SVLt 9506.58 (0.62) 1 10074.95 (1.64) 1
SVLJ 9479.82 (1.19) 9 10025.63 (1.45) 13
SVLJt 9492.25 (1.00) 4 10066.63 (1.86) 2
SVLCJ 9487.94 (1.32) 7 10063.01 (1.97) 3

* The values are based on log scale and standard error in parentheses.

Table 5: Marginal likelihood (ML) for stock return data.
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Table 5 reports the estimated marginal likelihoods, standard errors and rankings for all the

competing models. The estimates show that the marginal likelihoods of the EGARCH models

are higher than the GARCH models, and the ones of the SV models with leverage are higher

than the SV models without leverage. This indicates that the leverage effect is important to

analyze the stock returns as discussed by Omori et al. (2007).

The models in the EGARCHJt class perform well. For example, the EGARCHt and the

EGARCHJt models outperform the SVLJ and SVLJt models for the S&P500, the NASDAQ

and the GM return data. Compared with the SVLCJ model, whose jumps do affect the

volatility as the EGARCHJt class, the EGARCHJ and the EGARCHJt models outperform

the SVLCJ model for the S&P500 and the NASDAQ return data.

Overall, the marginal likelihood of the SVLt model is the highest among the competing

models. As pointed out by Nakajima and Omori (2009), the SVLt model performs better than

the other models in the SVLJt class, and we find that it is also favored over the EGARCHJt

models.

The heavy-tails contribute most of the models for their marginal likelihoods. Most of the

EGARCH models with Student-t errors are favored over the ones without them. On the other

hand, the jumps do not always contribute these models as discussed by Nakajima and Omori

(2009). Overall, we find that the jumps and the heavy-tails have the large contributions for

the EGARCH models. The ratio of the marginal likelihood of the SVL model to the one of

the EGARCH model is quite large, while the one of the SVLJt model to the EGARCHJt

model is less than one, which implies the EGARCHJt model outperforms the SVLJt model

by incorporating the jumps and the heavy-tails for the S&P500, the NASDAQ and the GM

return data.

5 Application to exchange rate data

5.1 Data

In this section, we estimate the EGARCHJt and the SVLJt classes for daily exchange rate

returns. We use two exchange rates series; UK Sterling and Japanese Yen against US Dollar.

The sample period is from October 1986 to August 1996. The returns are computed as yt =

Pt/Pt−1 − 1, and demeaned, where Pt is the closing price on the business day t. The sample

size is 2,566 for each series. Table 6 summarizes the descriptive statistics (based on data before

demeaned) and Figure 5 plots the two series of daily exchange rate return. It is interesting

that UK Sterling has a negative skewness, while Japanese Yen has a positive one over the
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sample period. In literature, it is often argued that empirical return distribution of stock

price is negatively skewed because of the heavier tail on its left side, which theoretically is

connected to the market player’s preference. On the other hand, the exchange rate is dealt

by two-side players, therefore the skewness of the return distribution is considered to depend

on the currency and sample period. The kurtosis of each series is around five to six, which is

larger than the one of a normal distribution.

Mean Stdev. Skewness Kurtosis Max. Min.
UK Sterling 0.0001 0.006 -0.181 5.327 0.031 -0.030
Japanese Yen 0.0002 0.007 0.217 6.236 0.034 -0.033

Table 6: Summary statistics for the daily exchange rate return data (1986/Oct – 1996/Aug,
n = 2, 566).
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Figure 5: The time-series plots for returns of two exchange rates against US Dollar (1986/Oct
– 1996/Aug).
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5.2 Model Comparison

We estimate the marginal likelihood of the GARCH and the SV classes for the daily return of

exchange rate series. The computational settings are same as the previous section.

UK Sterling Japanese Yen
Model Log-ML Ranking Log-ML Ranking
GARCH 9495.02 (0.01) 17 9425.15 (0.01) 17
GARCHt 9497.09 (0.21) 16 9435.99 (0.25) 14
GARCHJ 9498.73 (0.95) 14 9438.23 (1.02) 10
GARCHJt 9498.20 (0.48) 15 9436.84 (1.32) 12
EGARCH 9502.19 (0.04) 13 9430.55 (0.85) 16
EGARCHt 9509.22 (0.20) 11 9436.24 (0.90) 13
EGARCHJ 9507.15 (1.43) 12 9435.30 (1.42) 15
EGARCHJt 9510.24 (1.14) 10 9439.95 (1.44) 8
SV 9525.02 (0.32) 6 9445.37 (1.24) 5
SVt 9548.70 (1.06) 2 9454.27 (1.13) 2
SVJ 9519.02 (0.39) 8 9439.00 (0.98) 9
SVJt 9543.17 (1.91) 4 9449.66 (1.35) 4
SVL 9524.73 (0.51) 7 9441.26 (0.79) 6
SVLt 9549.73 (1.16) 1 9454.65 (0.57) 1
SVLJ 9518.35 (0.36) 9 9437.35 (1.08) 11
SVLJt 9544.53 (1.15) 3 9453.97 (1.48) 3
SVLCJ 9538.12 (1.95) 5 9440.48 (0.99) 7

* The values are based on log scale and standard error in parentheses.

Table 7: Marginal likelihood (ML) for exchange rate return data.

Table 7 reports the estimated marginal likelihoods for 17 competing models. Clearly, the

SV models are favoured over the GARCH models for both return data. In the SV class, the

SVt model yields the best performance and the next is interestingly not the SV models with

leverage but the SVt model (without leverage). For the stock return data examined in the

previous section, the non-leverage SV models have less performance at all compared to the

leverage SV models. However, for the exchange rate return data, non-leverage SV models are

favoured almost in the same level as the leverage SV models. It is probably because there

are two-side participants in the currency market. The asymmetry between the disturbances

of observation equation and volatility process, which is refereed as leverage effect here, would

depend on the difference of dealer’s preference, economic condition and price level between

two countries, and moreover it would totally depend on the sample period to estimate. Table

8 shows the posterior estimates of the SVLt model for the UK Sterling series. In fact, the

posterior mean for the parameter ρ is -0.1227 and the 95% credible intervals contain zero,

21



Parameter Mean Stdev. 95% interval Inefficiency
φ 0.9831 0.0062 [0.9676, 0.9928] 15.66
σ 0.1238 0.0221 [0.0852, 0.1686] 21.96
ρ -0.1227 0.0996 [-0.3043, 0.0819] 1.31

exp(µ/2) 0.0048 0.0004 [0.0040, 0.0056] 12.36
ν 5.9712 0.7682 [4.7057, 7.4455] 109.17

Table 8: Estimation results of the SVLt model for UK Sterling returns against US Dollar.

which indicates little evidence for the leverage effect. This result implies that the leverage

effect plays the important role for stock return, while not so much for exchange rate return.

The jump models are not favoured over the no-jump models overall for both the GARCH

and the SV models. The kurtosis of the empirical return distribution is higher than the one of

the normal, while the estimation results indicate that it is enough to incorporate the heavy-

tailed error distribution on our dataset.

6 Robustness check

In this section, additional model comparisons for the subsample periods and different priors

are examined as a robustness check. First, the sample period of the S&P500 return data is

divided into two subsample periods; the first-half (n = 1,891) and the second-half (n = 1,890)

period. From the discussion in the previous section, the leverage effect is found to contribute

the model fit clearly. Thus, for the estimation of the robustness checks, the models without

leverage effect are omitted and the marginal likelihoods of the models with leverage effect are

estimated for the two subsample periods.

Table 9 reports the estimated marginal likelihoods for the subsample periods of the S&P500

return data. Still, the marginal likelihood of the SVLt model is the highest for both subsample

periods. The second (EGARCHJt) and the third (EGARCHt) best models are unchanged,

although the following ranking is slightly changed. For the first-half subsample period, the

SV models with jumps (SVLJ and SVLJt) are relatively highly favored, although they are

outperformed by the SVL model for the second-half subsample period.

Second, a Bayesian model comparison requires a prior sensitivity analysis to check a ro-

bustness of estimation results. Two different priors are examined for the model comparison

using the S&P500 return data. Let the priors used in the previous sections denoted the Prior1.

The different priors are specified as follows:
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1st.half 2nd.half
Model Log-ML Ranking Log-ML Ranking
EGARCH 6588.46 (0.03) 9 6088.73 (0.02) 9
EGARCHt 6602.91 (0.33) 3 6105.43 (0.87) 3
EGARCHJ 6595.31 (0.06) 6 6094.79 (0.31) 7
EGARCHJt 6603.43 (0.43) 2 6105.94 (0.43) 2
SVL 6593.46 (0.38) 8 6102.44 (0.98) 4
SVLt 6608.52 (0.68) 1 6110.17 (0.72) 1
SVLJ 6597.01 (0.96) 5 6096.19 (1.34) 6
SVLJt 6597.43 (0.75) 4 6099.16 (1.03) 5
SVLCJ 6595.20 (0.76) 7 6092.08 (1.21) 8

* The values are based on log scale and standard error in parentheses.

Table 9: Marginal likelihood (ML) for the S&P500 return data (subsample period).

Prior2

β ∼ Beta(4, 1), θ ∼ N(−0.08, 0.5), κ ∼ Beta(2, 100),

δ ∼ Gamma(5, 0.05), ν ∼ Gamma(16, 0.8), for EGARCHJt,

σ−2 ∼ Gamma(5, 0.05), µ ∼ N(−10, 2), κ ∼ Beta(2, 100),

log(δ) ∼ N(−2.5, 0.15), ν ∼ Gamma(16, 0.8), for SVLJt.

Prior3

β ∼ Beta(4, 1), θ ∼ N(0, 1), κ ∼ Beta(1, 100),

δ ∼ Gamma(10, 0.2), ν ∼ Gamma(20, 0.5), for EGARCHJt,

σ−2 ∼ Gamma(5, 0.1), µ ∼ N(−10, 1), κ ∼ Beta(1, 100),

log(δ) ∼ N(−2.5, 0.4), ν ∼ Gamma(20, 0.5), for SVLJt.

The priors not mentioned here are specified same as the previous sections. The marginal

likelihoods of the competing models are estimated for the full sample period of the S&P500

return data.

Table 10 reports the estimated marginal likelihoods for the two different priors. Again, the

SVLt model best fits the data under both priors. Overall, the heavy-tailed model such as the

EGARCHt, the EGARCHJt and the SVLJt models are ranked high. Under the Prior2, the

EGARCHt and the EGARCHJt models outperform the SV models except the SVLt model.

On the other hand, the SVL and SVLJt model outperform the EGARCH models under the
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Prior2 Prior3
Model Log-ML Ranking Log-ML Ranking
EGARCH 12671.20 (0.09) 9 12669.93 (0.04) 9
EGARCHt 12704.10 (0.39) 2 12702.77 (0.38) 5
EGARCHJ 12694.48 (0.22) 7 12692.58 (0.32) 8
EGARCHJt 12702.12 (0.43) 3 12702.90 (0.64) 4
SVL 12701.09 (0.39) 4 12708.12 (0.94) 2
SVLt 12719.13 (0.92) 1 12720.91 (0.58) 1
SVLJ 12695.83 (1.43) 6 12699.89 (1.23) 6
SVLJt 12701.02 (0.91) 5 12703.28 (0.97) 3
SVLCJ 12693.20 (1.62) 8 12695.58 (1.83) 7

* The values are based on log scale and standard error in parentheses.

Table 10: Marginal likelihood (ML) for the S&P500 data (prior sensitivity analysis).

Prior3. Though the ranking changes slightly between the two priors, the estimation results

indicate that the best performance of the SVLt model is quite robust.

7 Conclusion

This paper compares the empirical performance of the fit among the GARCH and the SV

models with leverage, jumps and heavy-tailed errors. The estimation methodology for these

models is developed using the Markov chain Monte Carlo estimation methods and the model

comparison is examined based on the marginal likelihood. The empirical results show the SV

model with leverage and Student-t distribution errors best fits the daily returns of stock return

and exchange rate series among the competing models. The estimation results indicates that

the leverage effect plays the important role for stock return, while not so much for exchange

rate return probably because of two-side participants in the currency market. The results of

model comparison are found robust for the subsample periods and different priors.
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Appendix. MCMC algorithm for GARCHJt and EGARCHJt

model

We illustrate the MCMC procedure for the GARCHJt and the EGARCHJt model in this

appendix. The proposed algorithm is as follows:

1. Initialize ϑ,κ, δ, ν, γ and λ.

2. Sample ϑ|δ, γ, λ, y.

To sample ϑ from its conditional posterior distribution π(ϑ|δ, γ,λ, y) ∝ π(ϑ)f(y|ϑ, δ, γ,λ),

we use the Metropolis-Hasting (M-H) algorithm (see e.g., Chib and Greenberg (1995)),

because the posterior distribution is not available in the form of an usual distribution

such as a normal distribution. We construct the proposal density in the form of a normal

distribution for the M-H algorithm by fitting the mean and variance on the target poste-

rior density from the product of second-order Taylor expansion. For the restriction for the

parameters in the GARCH models, we consider the transformation of ϑ → ϑ̃ = (ω̃, α̃, β̃)

such that ω̃ = log ω, α̃ = log(α/(1 − α)), and β̃ = log(β/(1 − α − β)). The posterior

density is transformed over the full space of R3, where we easily implement the proposal

density. To draw a candidate of the M-H algorithm, we find ϑ̃∗ which maximizes (or ap-

proximately maximizes) the posterior density, π(ϑ̃|δ, γ, λ, y), and generate the candidate

ϑ̃∗ from the normal distribution N(µ∗,Σ∗), where

µ∗ = ϑ̃∗ + Σ∗
∂ log π(ϑ̃|δ, γ,λ, y)

∂ϑ

∣∣∣∣∣
ϑ̃=ϑ̃∗

, Σ−1
∗ = − ∂ log π(ϑ̃|δ, γ,λ, y)

∂ϑ̃∂ϑ̃′

∣∣∣∣∣
ϑ̃=ϑ̃∗

.

which is obtained from the second-order Taylor expansion around θ̃. Let ϑ0 denote the

current point of ϑ and we reversely transform ϑ̃∗ to ϑ∗. We accept the candidate ϑ∗ with

probability

α(θ0, θ
∗|δ, γ, λ, y) = min

{
π(θ∗|δ, γ,λ, y)q(θ0|δ, γ,λ, y)
π(θ0|δ, γ, λ, y)q(θ∗|δ, γ,λ, y)

, 1
}

,

where q denotes the proposal density. If the candidate θ∗ is rejected, we take the current

value θ0.

3. Sample (δ, γ)|ϑ,κ, λ, y.

(a) Sample δ|ϑ,κ, λ, y.
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The joint posterior distribution of (δ, γ) is given by

π(δ, γ|ϑ,κ, λ, y) ∝ π(δ)
n∏

t=1

κγt(1− κ)1−γt
1

√
σ2

t λt + γtδ2
exp

{

− y2
t

2(σ2
t λt + γtδ2)

}

,

where kt is marginalized in the likelihood function. To sample δ, we further marginal-

ize this joint posterior distribution over γ. The marginalized conditional posterior

distribution is formed as

π(δ|ϑ,κ,λ, y) ∝ π(δ)
n∏

t=1



 κ
√

σ2
t λt + δ2

exp
{

− y2
t

2(σ2
t λt + δ2)

}

+
1− κ

σt
√

λt
exp

(

− y2
t

2σ2
t λt

)

 .

We can sample δ using the M-H algorithm. We note that this marginalization

enables us to accelerate the convergence of the MCMC sampling.

(b) Sample γ|ϑ,κ, δ,λ, y.

Sampling γ from its posterior distribution requires only to evaluate the Bernoulli

distribution π(γt|ϑ,κ, δ,λ, y) where γt = 0, 1. We sample γt using the probability

mass function of its posterior density as

π(γt = 1|ϑ,κ, δ,λ, y) ∝ κ
√

σ2
t λt + δ2

exp
{

− y2
t

2(σ2
t λt + δ2)

}

,

π(γt = 0|ϑ,κ, δ,λ, y) ∝ 1− κ

σ
√

λt
exp

(

− y2
t

2σ2
t λt

)

,

for t = 1, . . . , n.

4. Sample κ|ϑ, δ, γ, λ, y.

When we specify the prior as κ ∼ Beta(nα0, nβ0) for the EGARCHJt model, we sample

κ from Beta(nα0 + n1, nβ0 + n0), where n1 and n0 denote the count of γt = 1 and γt = 0

respectively. On the other hand, for the GARCHJt model, we consider the posterior

distribution of κ conditional on (ϑ, δ, γ,λ), because we assume σ2
1 = (ω + ακδ2)/(1 −

α − β − ρ/2). The posterior distribution of κ is not written in the form of a beta

distribution. We sample κ using the M-H algorithm with the candidate drawn from

Beta(nα0 + n1, nβ0 + n0).

5. Sample (λ, ν)|ϑ, δ, γ, y.
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(a) Sample λ|ϑ, δ, ν, γ, y.

The joint posterior distribution of (λ, ν) is given by

π(λ, ν|ϑ, δ, γ, y) ∝ π(ν)
n∏

t=1

(ν
2

) ν
2

Γ
(ν

2

)λ
−( ν

2 +1)
t exp

(
− ν

2λt

)

× 1
√

σ2
t λt + γtδ2

exp
{

− y2
t

2(σ2
t λt + γtδ2)

}

.

We sample λt from its conditional posterior density,

π(λt|ϑ, δ, ν, γ, y) ∝ λ
−( ν

2 +1)
t exp

(
− ν

2λt

) 1
√

σ2
t λt + γtδ2

exp
{

− y2
t

2(σ2
t λt + γtδ2)

}

,

by the M-H algorithm with the candidate drawn as (λ∗t )−1 ∼ Gamma(ν/2, ν/2), for

t = 1, . . . , n.

(b) Sample ν|λ.

Finally, the conditional posterior distribution for ν is given by

π(ν|λ) ∝ π(ν)
(ν

2

)nν
2

Γ
(ν

2

)n

n∏

t=1

λ
− ν

2
t exp

(

−ν

2

n∑

t=1

λ−1
t

)

.

We sample ν by the M-H algorithm with the normal proposal density.
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